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1 Introduction

A large literature estimates monetary policy rules of the form proposed by Taylor (1993) that relate

the realized fed funds rate to past or expected future indicators of output and inflation. Examples

include Evans (1998), Clarida, Gali, and Gertler (2000), Rudebusch (2002), Owyang and Ramey

(2004), Boivin (2006), Ang, Dong, and Piazzesi (2007), and Smith and Taylor (forthcoming). That

kind of estimation is well suited to describe what policy rule the Fed has actually followed.

However, there is also considerable interest in what market participants expect the Fed to do.

Expectations of future monetary policy are a key part of the monetary transmission mechanism in

virtually any macroeconomic model. The Federal Reserve’s expected future policy rate influences

current interest rates immediately upon the market learning about the Federal Reserve’s intentions

to stimulate or curtail economic behavior (Hamilton (2008)). Moreover, Federal Open Market

Committee (FOMC) statements provide guidance for the direction of future policy rates and are

responded to instantaneously by the market upon their public release (Kohn and Sack (2004)).

This paper proposes a novel method that enables us to uncover the market’s perceived monetary

policy rule. Like many previous researchers (e.g., Gürkaynak, Sack, and Swanson (2005), Faust,

Rogers, Wang, and Wright (2007), and Bartolini, Goldberg, and Sacarny (2008)), we identify news

by the difference between a macroeconomic data release value and the value expected beforehand by

the market. On this news day, we measure the news’ effects on economic fundamentals’ forecasts and

monetary policy forecasts, the latter coming from the change in market prices for fed funds futures

contracts. Our contribution is to use a Taylor-Rule structure to link the fundamentals forecast

updates with the policy forecast updates in order to estimate the market-perceived parameters for

a Taylor Rule.

Our methodology opens up to researchers the use of daily data, which offers three advantages

we highlight. First, by looking at the response of fed funds futures prices for contracts of different

horizons to a new data release, we are able to measure how long the market believes it will take

the Fed to adjust interest rates in response to changing fundamentals. We can thereby obtain

new measures of the nature of monetary policy inertia, something that is difficult for traditional

methods to estimate.1 We document a change in the market’s perception of the Fed’s policy rule in

terms of both the magnitude of the ultimate response and in the degree of inertia. Since 2000, the
1See Rudebusch (2002) and Rudebusch (2006) for alternative approaches.
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market-perceived monetary policy rule involves an eventual response to inflation that is bigger than

that associated with perceived pre-2000 behavior. On the other hand, the market also believes that

the Fed is more sluggish in making its intended adjustments. We show in simulations with a simple

new-Keynesian model that the first feature would tend to stabilize output, whereas the second

feature would be destabilizing. These simulations suggest that the “measured pace” of monetary

tightening during 2004-2006 may have been counterproductive.

Second, our approach offers a cleaner answer for how to handle real-time versus revised data

sets, by focusing on market expectations formed on the basis of the information as it had actually

been publicly released as of a particular calendar date.

Third, our approach is robust to estimation problems engendered by potential output and the

inflation target. Potential output is tricky to define and measure in real time (Orphanides and van

Norden (2002)), and Orphanides (2001) argues that this can confound policy rule estimation. On

the other hand, the Fed’s inflation target is unobservable, and moreover a growing literature, in-

cluding Ireland (2007) and Cogley and Sbordone (2008) among others, has postulated an important

historical role for low-frequency variation in the Fed’s inflation target. The latency of potential

output and the inflation target poses a problem for standard policy rule estimation methods be-

cause their values are necessary for measuring the explanatory variables. Our method uses daily

data to difference out these slowly moving latent variables from the estimation equations.

The remainder of the paper is structured as follows: Section 2 introduces our framework and

its testable implications. Section 3 discusses the empirical strategy based on these implications and

describes the data. Section 4 presents our baseline full sample results, and then shows evidence

of time variation in perceived policy response and estimates parameters on subsamples. Section 5

generalizes the approach to estimation of a Taylor Rule with lagged adjustment dynamics and dis-

cusses the economic significance of those dynamics. We investigate the sensitivity of our conclusions

to various assumptions and variable decisions in Section 6. Section 7 concludes.

2 Framework

We begin with a standard Taylor Rule that is assumed by the market to characterize Federal

Reserve decisions. Let t represent a particular month and rt the average daily effective fed funds

rate for that month. The market assumes that the Fed sets the funds rate in response to the Taylor
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Rule variables πt − π∗t , the deviation from target of cumulative inflation between t− 12 and t, and

yt − y∗t , a measure of the real output gap in t:

rt = r + β (πt − π∗t ) + δ (yt − y∗t ) + ut (2.1)

where yt is real output growth and y∗t is potential real output growth.

We will be keeping careful track in this analysis of exactly when data of different sorts arrives.

Let Ωi,t denote the information set that is actually available to market participants as of the ith day

of month t; let Ω̃i,t denote the Fed’s information set at that time. The formulation (2.1) assumes

that the Fed knows the values of πt − π∗t and yt − y∗t at the time it sets rt, even though πt and

yt would not be known to market participants until some later time. The framework is readily

generalizable to a case where the Fed instead sets rt on the basis of information available as of

some day j within month t:

rt = r + βE
(
πt
∣∣Ω̃j,t

)
− βE

(
π∗t
∣∣Ω̃j,t

)
+ δE

(
yt
∣∣Ω̃j,t

)
− δE

(
y∗t
∣∣Ω̃j,t

)
+ ut. (2.2)

Consider the expectation of (2.1) conditional on information available to the market as of the

ith day of an earlier month τ = t− h:

E
(
rt
∣∣Ωi,τ

)
= r + βE

(
πt
∣∣Ωi,τ

)
− βE

(
π∗t
∣∣Ωi,τ

)
+ δE

(
yt
∣∣Ωi,τ

)
− δE

(
y∗t
∣∣Ωi,τ

)
+ E

(
ut
∣∣Ωi,τ

)
. (2.3)

Alternatively, if we take expectations of (2.2) conditional on the information set Ωi,τ , the identical

equation (2.3) follows due to the Law of Iterated Expectations.2 In either case, we obtain the

following expression for the change in expectations between the ith day and the previous day

(i− 1) of month τ :

E
(
rt
∣∣Ωi,τ

)
− E

(
rt
∣∣Ωi−1,τ

)
(2.4)

= β
[
E
(
πt
∣∣Ωi,τ

)
− E

(
πt
∣∣Ωi−1,τ

)]
+ δ

[
E
(
yt
∣∣Ωi,τ

)
− E

(
yt
∣∣Ωi−1,τ

)]
−β
[
E
(
π∗t
∣∣Ωi,τ

)
− E

(
π∗t
∣∣Ωi−1,τ

)]
− δ

[
E
(
y∗t
∣∣Ωi,τ

)
− E

(
y∗t
∣∣Ωi−1,τ

)]
+
[
E
(
ut
∣∣Ωi,τ

)
− E

(
ut
∣∣Ωi−1,τ

)]
.

Equation (2.4) is the key to what follows, stating that updates to the market forecast of future policy

are linked to updates to the market forecast of future economic conditions via the market-perceived

monetary policy rule.
2We assume that Ωi,τ ⊆ Ω̃j,t.
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We will consider a set of k = 1, 2, ...,K different days within month τ on which particular

information becomes available. Consider first k = 1, which we associate with the release of, say,

the CPI. Let i(1, τ) denote the day in month τ on which a new inflation number (namely, the value

of πτ−1) is released. For example, for τ = December 2008, the CPI data reported on December 16

(i(1, τ) = 16) was the value for November 2008 (so that πτ−1 became known on i(1, τ)). Consider

then the initial report of the value of πτ−1 on day i(1, τ). We will proxy the news content of this

report by comparing the actual value πτ−1 with the value expected by the market, which we denote

π̃τ−1:

E
(
πτ−1

∣∣Ωi(1,τ),τ

)
− E

(
πτ−1

∣∣Ωi(1,τ)−1,τ

)
= πτ−1 − π̃τ−1.

The CPI announcement of πτ−1 (arriving on i(1, τ)) has an implication for what market partic-

ipants would have expected πt to turn out to be. We propose to model this implication by a linear

equation forecasting πt on the basis of πτ−1, π̃τ−1, and x1,τ , where x1,τ denotes a vector of other

variables that would have been known to market participants prior to the day i(1, τ) of month τ :

πt = γπ,1πτ−1 + ξπ,1π̃τ−1 + ζ′π,1x1,τ + vπ,1,t. (2.5)

The first subscript (π) on the coefficients indicates that this is a coefficient used to forecast sub-

sequent inflation, and the second subscript (1) indicates that the forecast is formed on the day on

which the first information variable (the CPI) is released. Note that the coefficients in equation

(2.5) are defined as linear projection coefficients, so that vπ,1,t is uncorrelated with πτ−1, π̃τ−1, and

x1,τ by the definition of γπ,1, ξπ,1, and ζ′π,1. The consequences of the month τ , day i(1, τ) news

release about πτ−1 for market expectations of πt are then given by

E
(
πt
∣∣Ωi(1),τ

)
− E

(
πt
∣∣Ωi(1)−1,τ

)
= γπ,1(πτ−1 − π̃τ−1) (2.6)

where we will subsume the dependence of i(1, τ) on τ when it is clear from the context.

The announcement of πτ−1 may also hold implications for market expectations about real output

yt, which we proxy analogously as

yt = γy,1πτ−1 + ξy,1π̃τ−1 + ζ′y,1x1,τ + vy,1,t

E
(
yt
∣∣Ωi(1),τ

)
− E

(
yt
∣∣Ωi(1)−1,τ

)
= γy,1(πτ−1 − π̃τ−1). (2.7)

Note that certain elements of ζ′π,1 and ζ′y,1 may be set to zero, depending on what elements of x1,τ

forecast πt or yt.
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Let f (h)
jτ denote the futures interest rate on day j of month τ for a fed funds futures contract

based on rt, the effective fed funds rate h months ahead. We propose that these fed funds futures

offer us a direct observation on how the market expectation of rt changed on day i(1):

f
(h)
i(1),τ − f

(h)
i(1)−1,τ = E

(
rt
∣∣Ωi(1),τ

)
− E

(
rt
∣∣Ωi(1)−1,τ

)
+ ηr,1 + qr,1,τ . (2.8)

Here ηr,1 captures the average change in the risk premium on fed funds futures contracts and qr,1,τ

any change in the risk premium relative to that average. In the absence of risk aversion in the

fed funds futures markets, the terms ηr,1 and qr,1,τ would be identically zero. There is certainly

good evidence for supposing the contribution of risk aversion to daily changes in fed funds prices

to be small; see Piazzesi and Swanson (2008) and Hamilton (2009).3 In the estimation strategy

adopted here, any changes in the risk premium, along with changes in the market’s expectation of

the residual in the Taylor Rule, changes in the market’s expectation of the inflation target, and

changes in the market’s expectation of potential output growth, are incorporated into a specification

error vr,1,τ ,

vr,1,τ = −δ
[
E
(
y∗t
∣∣Ωi(1),τ

)
− E

(
y∗t
∣∣Ωi(1)−1,τ

)]
− β

[
E
(
π∗t
∣∣Ωi(1),τ

)
− E

(
π∗t
∣∣Ωi(1)−1,τ

)]
(2.9)

+
[
E
(
ut
∣∣Ωi(1),τ

)
− E

(
ut
∣∣Ωi(1)−1,τ

)]
+ qr,1,τ .

Substituting (2.6), (2.7), (2.8), and (2.9) into (2.4), we have

f
(h)
i(1),τ − f

(h)
i(1)−1,τ = ηr,1 + (βγπ,1 + δγy,1)(πτ−1 − π̃τ−1) + vr,1,τ .

Consider next a second news release in month τ , namely the real activity indicator yτ−1 released

on day i(2). For these days we employ the auxiliary forecasting equations

πt = γπ,2yτ−1 + ξπ,2ỹτ−1 + ζ′π,2x2,τ + vπ,2,t

yt = γy,2yτ−1 + ξy,2ỹτ−1 + ζ′y,2x2,τ + vy,2,t

where x2,τ is known prior to day i(2, τ). From these we derive

f
(h)
i(2),τ − f

(h)
i(2)−1,τ = ηr,2 + (βγπ,2 + δγy,2)(yτ−1 − ỹτ−1) + vr,2,τ .

3Our method works if either the risk premium is constant, as implied by the common “expectations hypothesis”
or under the implication of consumption-based asset pricing models that the risk premium would change little on
a daily basis. Piazzesi and Swanson’s (2008) results indicate that “[these] risk premia seem to change primarily at
business-cycle frequencies.”
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In general, if some indicator wk,τ−1 is released on day i(k, τ), we have the following three

equations:

πt = γπ,kwk,τ−1 + ξπ,kw̃k,τ−1 + ζ′π,kxk,τ + vπ,k,t (2.10)

yt = γy,kwk,τ−1 + ξy,kw̃k,τ−1 + ζ′y,kxk,τ + vy,k,t (2.11)

f
(h)
i(k),τ − f

(h)
i(k)−1,τ = ηr,k + (βγπ,k + δγy,k)(wk,τ−1 − w̃k,τ−1) + vr,k,τ . (2.12)

Let z1,τ = (1, πτ−1, π̃τ−1,x′1,τ )′ denote the vector including the day i(1) release of πτ−1 and the

information available as of the day before, where we assume that z1,τ is uncorrelated with vπ,1,t,

vy,1,t, and vr,1,τ . Similarly, we take zk,τ = (1, wk,τ−1, w̃k,τ−1,x′k,τ )′ to be uncorrelated with vπ,k,t,

vy,k,t, and vr,k,τ , for k = 1, 2, . . . ,K. Thus our identifying assumption is that the following vector

has expectation zero:

(
πt − γπ,1w1,τ−1 − ξπ,1w̃1,τ−1 − ζ′π,1x1,τ

)
z1,τ(

yt − γy,1w1,τ−1 − ξy,1w̃1,τ−1 − ζ′y,1x1,τ

)
z1,τ[

f
(h)
i(1),τ − f

(h)
i(1)−1,τ − ηr,1 − (βγπ,1 + δγy,1)(w1,τ−1 − w̃1,τ−1)

]
z1,τ

...(
πt − γπ,KwK,τ−1 − ξπ,Kw̃K,τ−1 − ζ′π,KxK,τ

)
zK,τ(

yt − γy,KwK,τ−1 − ξy,Kw̃K,τ−1 − ζ′y,KxK,τ
)
zK,τ[

f
(h)
i(K),τ − f

(h)
i(K)−1,τ − ηr,k − (βγπ,K + δγy,K)(wK,τ−1 − w̃K,τ−1)

]
zK,τ


. (2.13)

Note that the ability to distinguish β from δ results from using at least K ≥ 2 different news

releases during month τ . A single release such as the inflation number could in principle have

implications both for future inflation (as captured by γπ,1) and future output (as captured by γy,1).

Hence any response of the fed funds futures prices to that news could come from either the policy

rule inflation coefficient (β) or output coefficient (δ). However, γπ,1 and γy,1 are each separately

observable (from the differing responses of πt and yt to πτ−1), so the change in the futures price

on i(1) tells us one linear combination (namely βγπ,1 + δγy,1) of the policy rule parameters β and

δ. But the separate response to the output release on day i(2) gives us a second linear combination

(βγπ,2 + δγy,2). Thus, the 3K equations above are sufficient to identify β and δ separately.

For each month τ there are K days of interest, for K the number of economic indicators under

consideration. Identification of this system is achieved so long as it is not the case that any one

indicator always arrives on the same day as another indicator.4 Of course, it is all right for any

two indicators occasionally to arrive on the same day.
4We make sure this is the case with the indicators we choose below.
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3 Estimation

We begin this section by describing the formal estimation strategy, which is Hansen’s (1982) gen-

eralized method of moments. Then we describe the data used.

3.1 Method

Recall that τ + h = t. Denoting

ζ
(h)
t =

(
1, πt, yt, f

(h)
i(1),τ , w1,τ−1, w̃1,τ−1,x′1,τ , z

′
1,τ , . . . , f

(h)
i(K),τ , wK,τ−1, w̃K,τ−1,x′K,τ , z

′
K,τ

)′
,

we rephrase (2.13) as the following population orthogonality condition for each θ(h), h = 1, 2, . . . ,

E
[
g
(
θ(h), ζ

(h)
t

)]
= 0, (3.1)

where θ collects the auxiliary forecasting parameters (γ ′, ξ′, ζ′)′ along with the main parameters of

interest, the policy rule coefficients (β, δ,η′r)
′. Let Y(h)

T ≡
(
ζ

(h)′
T , ζ

(h)′
T−1, . . . , ζ

(h)′
1

)′
be the vector of

all observations for each choice of horizon h. Then we have the sample average

g
(
θ(h);Y(h)

T

)
≡ T−1

T∑
t=1

g
(
θ(h), ζ

(h)
t

)
and the GMM estimator (Hansen (1982)) for each horizon h minimizes

Q
(
θ(h),Y(h)

T

)
= g

(
θ(h);Y(h)

T

)′
W(h)

T g
(
θ(h);Y(h)

T

)
. (3.2)

As usual, the optimal weighting matrix W(h)
T is given by the inverse of the asymptotic variance of

the sample mean of g
(
θ(h), ζ

(h)
t

)
. In turn, we calculate a heteroskedasticity and autocorrelation

robust estimate Ŝ(h)
T of this asymptotic variance, and the efficient GMM estimator uses the inverse

of this HAC estimate as the weighting matrix, with the following asymptotic approximations:

θ̂
(h) ≈ N

(
θ(h), T−1V̂(h)

T

)
, V̂(h)

T =
(

[D̂(h)
T ][Ŝ(h)

T ]−1[D̂(h)
T ]′

)−1

and [D̂(h)
T ]′ =

∂g
(
θ;Y(h)

T

)
∂θ′

∣∣∣∣
θ=θ̂

(h)
.

Since g(·) is nonlinear in θ(h), the minimization of (3.2) is achieved numerically. Our results

are calculated by two-step GMM starting from an initial guess provided by a simple two-stage OLS

procedure and with other initial conditions considered to obtain some assurance that the global
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optimum has been found.5 The inconsistent two-stage OLS procedure would instead first estimate

the auxiliary forecasting equations independently, then use these forecast parameter estimates

to generate regressors for the Taylor Rule regression.6 Joint estimation by (nonlinear) two-step

GMM is consistent and efficient – see Newey and McFadden (1994).7 We estimate each horizon h

independently from the others so that nothing other than the original data links these estimates to

one another.

As mentioned, identification is achieved by considering at least two indicators w, in which case

the system (3.2) in general is just-identified. When we use more than two indicators, the system nat-

urally delivers overidentifying restrictions. Additionally, we can impose cross-equation restrictions

that create overidentification. Our baseline specification is overidentified for both reasons.

3.2 Data

Our data set consists ofK particular days for each month over the period 1994:M1 through 2007:M6.

Data on fed funds futures contracts come from the Chicago Board of Trade. Fed funds futures are

accurate predictors of the effective fed funds rate, as documented in numerous studies including

Evans (1998), Gürkaynak, Sack, and Swanson (2007), Piazzesi and Swanson (2008), and Hamilton

(2009). We restrict our attention to fed funds futures traded after 1994. One reason, as noted

by Gürkaynak, Sack, and Swanson (2007), is that the Federal Open Market Committee began

announcing the fed funds target in 1994, and this change in procedure could cause changes in the

forecasting relations. In addition, the trading volumes pick up noticeably during this year.8 At the

other end of the sample period, we end our data at 2007:M7 in order to avoid the period of major

financial disruptions that started in the late summer of 2007 following the fund freezes by BNP

Paribas in early August.

We measure inflation by the year-over-year growth rate of the Core-PCE price index from the

BEA. This has been the Federal Reserve’s key inflation indicator over the sample we consider.

We measure output growth by the year-over-year growth rate of industrial production from the

Federal Reserve Board. To use as much data as possible we stay at the monthly frequency and
5We have tried Continually-Updated GMM, but have found this makes little difference to our baseline results.
6Since our framework introduces a generated-regressor, the two-stage OLS procedure is inconsistent – see Pagan

(1986).
7Our HAC estimator is that of Newey and West (1987) with 13 lags.
8See Figure A1 for a plot of these data.
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therefore require a monthly output growth series. Industrial production growth has been used

by previous studies to proxy for overall output growth (e.g. Stock and Watson (2002)) and is a

natural candidate for our baseline. As a robustness check we will consider another measure for

output growth, Macroeconomic Advisers’ monthly GDP.

The economic indicators we consider are data releases from various government agencies that are

followed by the Money Market Survey (MMS). Following Gürkaynak, Sack, and Swanson (2005), the

median forecast provides a proxy for each variable’s market expectation. MMS provides market

expectations for several candidate economic indicators. Our choice is guided by asking which

economic variables might be most helpful for forecasting output growth and core PCE inflation. It

is natural for this purpose to use core CPI inflation (CPIXFE) and industrial production (INDPRD)

themselves.9 In addition, the macroeconomic announcement literature has noted that market

participants scrutinize and respond to nonfarm payroll employment (Gürkaynak, Sack, and Swanson

(2005), Bartolini, Goldberg, and Sacarny (2008)), and so we will consider that indicator (NFPAY)

as well. It is worth noting that NFPAY and the unemployment rate are released on the same day

each month, in the BLS Employment Situation report. As mentioned above, this implies that either

one of these, but not both, can be used in estimation. Given the importance of NFPAY found by

prior studies, this steers us away from the unemployment rate as an indicator. This in turn makes

the unemployment rate less attractive a proxy for output growth, since we would naturally then

use it as an indicator.

In terms of the variables entering the auxiliary forecasting equations, we set

xk,τ =
(
πτ−2, yτ−2, f

(h)
i(k)−1,τ , 1

)′
.

The lagged values of inflation and output growth are included to control for their autoregressive

nature. For parsimony, we set to zero the first element of ζy,k, the coefficient on πτ−2 in indicator k’s

auxiliary forecasting equation for yt; likewise, we zero out the second element of ζπ,k, the coefficient

on yτ−2 in indicator k’s auxiliary forecasting equation for πt. The fed funds futures prediction for

the day before i(k) is included to control for the predictive content (vis-a-vis each Taylor Rule

variable) of the futures price that has already been priced into the contract.
9MMS does not survey forecasts for Core-PCE inflation, hence our reliance on Core-CPI inflation. Fortunately,

Core-CPI forecasts Core-PCE inflation well – further details are available from the authors upon request.
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4 Results

First we present our baseline full-sample results using three indicators. We then show that sta-

tistical tests of our overidentifying restrictions fail to reject our baseline model, along with other

specifications considered for robustness. Motivated by related literature, we run tests for breaks in

the policy rule parameters and find evidence of their variation over time. Placing the break around

the beginning of the year 2000, we present subsample estimates suggesting the market-perceived

monetary policy rule has changed over time, and repeat the overidentification tests on the separate

subsamples.

4.1 Baseline

Our baseline results use three indicators – CPIXFE, INDPRD, and NFPAY – and impose the cross-

equation restriction that the average risk premium change is identical across indicators:

ηr,k = ηr, k = 1, 2, ...,K. (4.1)

This cross-equation restriction embodies the assumption that the different economic indicators

systematically affect the forecasted policy rate only through changes to forecasted inflation and

output, and it adds statistical precision to our estimates; we further discuss and test this restriction

in Section 6. The policy rule response coefficient estimates are presented in Table 1, and we note

a few features deserving mention.10

Table 1: Market-Perceived Monetary Policy Rule Estimates, baseline

h
1 2 3 4 5 6

β 0.3423 0.8723** 1.3487 1.1114** 1.1068* 1.3733
0.2046 0.1496 0.7757 0.4305 0.5118 0.7252

δ 0.0510** 0.0279 0.1603** 0.1258** 0.1429** 0.1938**
0.0092 0.0204 0.0361 0.0306 0.0438 0.0702

Notes: The policy rule coefficient on inflation is β and on the output gap is δ. HAC standard errors in italics. The
markers * and ** denote significance at 5% and 1% levels, respectively. There are 160 observations for h = 1, 159
for h = 2, etc. The indicators are CPIXFE, INDPRD, and NFPAY. Point estimates and standard errors from two-step
nonlinear GMM. Data run over 1994:M1-2007:M7.

10Estimates of the constant are reported in Table A1 of Appendix A.1.
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First, we obtain reasonably precise estimates of the market-perceived policy response to infla-

tion. Horizons two, four, and five all exhibit inflation response coefficients that are significant at the

5% level, and coefficients for the remaining horizons are significant at the 10% level. The output

response coefficient is statistically significant and positive at the 1% level for all horizons except

the second. These results suggest that our empirical methodology effectively extracts information

from market forecast updates that occur in response to macroeconomic news.

Second, the market does not expect the Fed to implement changes immediately. The response

coefficients at longer horizons tend to be larger than the response coefficients at shorter horizons,

and 95% confidence intervals for β or δ often exclude the point estimates obtained for different h.

Recall that the units of the inflation response coefficients are identical across horizons, as are the

coefficients on output. These parameters answer the question: looking h months ahead, what is

the response of the forecasted policy rate to a one unit increase in the forecasted rate of inflation

or output growth? This feature of the results strongly suggests that the market believes the Fed

gradually adjusts policy in response to economic fundamentals, a point we explore further in Section

5.

4.2 Overidentification and Break Tests

We next evaluate the appropriateness of the assumptions behind these estimates. We first investi-

gate Hansen’s (1982) J-tests of overidentifying restrictions given by

TQ
(
θ̂

(h)
,Y(h)

T

)
≈ χ2(m) (4.2)

for m the number of overidentifying restrictions. The p-values for this test are presented in Table 2.

Recall that our baseline specification overidentifies the model both by using three indicators and by

imposing that the policy rule specification error means are identical for these indicators (equation

(4.1)). Row 1 displays the p-values associated with the J-statistics for the baseline specification.

We fail to reject at the 5% level the overidentifying restrictions for every horizon h, offering some

confirmation that our basic framework is consistent with the data.

Papers including Clarida, Gali, and Gertler (2000), Primiceri (2006), and Boivin (2006) have

argued that U.S. monetary policy has changed over time. Unfortunately, our data are not available

for the period over which those papers find the most dramatic policy changes. Nonetheless, if

monetary policy changed once, then it could change again – and market participants are aware of

11



Table 2: Overidentification Tests, baseline

h
1 2 3 4 5 6

(1) Baseline 0.1176 0.1172 0.1099 0.1006 0.1222 0.1044
(2) Baseline, pre 0.3657 0.4600 0.3881 0.3827 0.4038 0.4068
(3) Baseline, post 0.2790 0.2879 0.2756 0.2963 0.3018 0.3045

Notes: p-values from Hansen’s (1982) J-test of overidentifying restrictions, for the baseline specifications. Baseline
is the baseline specification estimated over the full sample. Baseline, pre and Baseline, post are the baseline
specifications estimated over the pre-2000 and post-2000 subsamples, respectively.

this possibility. We therefore ask whether market participants’ perception of the monetary policy

rule have changed over time.

To answer this question, we test for a break in the parameters of interest. Using Andrews’s

(1993) break test, we test the null hypothesis that all parameters are constant against the alternative

that the policy rule coefficients β, δ, and ηr experienced a break.11 Letting the policy rule coefficient

vector be b = (β, δ, ηr)′, we test:

H0 : bt = b0 ∀t ≥ 1 for some b0 ∈ R3

H1($) : bt =
{

b1($) for t = 1, . . . , T$
b2($) for t = T$ + 1, . . . , T

}
for some constants b1($),b2($) ∈ R3

for values of $ in (0.25,0.75). We use the sup-Wald statistic and tabulated critical values in

Andrews (1993).

For each horizon considered, there is strong evidence of a break in the policy rule coefficients b.

In particular, for our application the 1% critical value is 16.6: the sup-Wald statistic is estimated

to be 204.3, 190.2, 170.6, 168.4, 142.0, and 123.1 for horizons 1 through 6, respectively. Moreover,

these maximal statistics occur at nearly the same time for every horizon, at the beginning of the

year 2000. In light of this evidence, we re-estimate our baseline model on the pre-2000 and post-2000

subsamples.

Returning to the overidentification test results of Table 2, rows 2 and 3 display the p-values for

the model estimated across horizons on each subsample. We now find that the model is readily

accepted for each subsample. Evidently, the break in the policy parameters was a factor in the
11The vector of parameters taken to be constant under both the null and the alternative is the vector of auxilliary

forecasting parameters (γ′, ξ′, ζ′)′.
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Table 3: Market-Perceived Monetary Policy Rule Estimates, baseline pre-2000 and
post-2000

h
1 2 3 4 5 6

Pre-2000 β 0.3611 0.8309* 1.2049* 1.2125 1.1116* 1.3821
0.2173 0.3717 0.4708 0.7954 0.4630 0.7610

δ 0.1550** 0.1284** 0.2641** 0.3968** 0.3844** 0.5744**
0.0349 0.0314 0.0670 0.1142 0.1364 0.1436

post-2000 β 0.1465** 0.3797** 0.4292* 0.5913** 0.8237** 2.2240*
0.0537 0.0673 0.2110 0.1318 0.1694 0.9529

δ 0.0366** 0.0034 -0.0474 -0.0544* 0.0401 -0.0777
0.0127 0.0071 0.0248 0.0277 0.0297 0.0834

Notes: The policy rule coefficient on inflation is β and on the output gap is δ. HAC standard errors in italics. The
markers * and ** denote significance at 5% and 1% levels, respectively. pre-2000, there are 69 observations for h = 1,
68 for h = 2, etc.; post-2000, there are 88 observations for h = 1, etc. The indicators are CPIXFE, INDPRD, and
NFPAY. Point estimates and standard errors from two-step nonlinear GMM. Data run over 1994:M1-2007:M7

lower full sample p-values in row 1. Once the parameters are allowed to differ by sub-period, we

find no evidence against our framework.

4.3 Time Variation

Table 3 displays the estimation results for the two subsamples. We now discuss the output and

inflation response coefficients estimated in each subsample and how they differ from one another.

Looking at the output response coefficients, the output response during the 1990s is moderate

but tightly estimated. At all horizons the point estimates are positive and significant at the 1%

level. The response is around 0.15 in the first month, rising to 0.57 by the sixth month, and

hence the policy response exhibits gradual adjustment. However, during the 2000s the response to

output changes dramatically. For half of the horizons the output response is a tightly estimated

zero, while for the remaining horizons the response is small and insignificant. Taken together, this

evidence suggests that during the 1990s the market perceived a moderate output gap response that

essentially vanished during the 2000s.

Looking now at the inflation responses, we see two noteworthy differences across the subsamples.

First, the pre-2000 estimates are not as precisely estimated as the post-2000 estimates. Prior to
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the year 2000 none are significant at 1% level. On the other hand, post-2000 all horizons are

statistically significant at the 5% level, with four horizons significant at the 1% level. This suggests

that the more recent period has seen greater signal, relative to noise, in the market forecast updates

to policy and fundamentals.

Second, the post-2000 inflation response is lower at short horizons and higher at the long horizon.

For the first four months after an inflation forecast increase, the forecasted policy response during

the 2000s is half what it was during the 1990s. For these early horizons we can reject at the 1%

level that the post-2000 inflation responses are equal to their pre-2000 estimated values. At the

long horizon, the post-2000 six-month horizon response (2.22) is about 50% greater than the pre-

2000 six-month horizon response (1.38). During the 1990s, policy followed the Taylor Principle (a

more-than one-for-one response of nominal rates to inflation) by the third month after a shock to

forecasted inflation; during the 2000s, policy has met this principle only by the sixth month.

Together, these observations suggest that the market-perceived policy response to inflation

changed over time in two distinct ways: during the 1990s the response adjusted at a quicker pace

with a moderate long-run magnitude, while during the 2000s the response adjusted at a slower pace

with a larger long-run magnitude.

5 Dynamic Analysis of the Policy Response

Up to this point in the paper we have been investigating a static Taylor Rule of the form of equation

(2.1). We found that the implied market expectations of how the Fed would respond to news turned

out to be a function of the time horizon h, meaning that the Fed is implicitly assumed by the market

to implement the policy changes warranted by the news only gradually. We next formulate a more

detailed specification of the nature of that lagged response that is consistent with the observed

market behavior, developing and calibrating a dynamic Taylor rule. Section 5.3 then explores the

implications of these changed dynamics using a simple new-Keynesian model.

5.1 Dynamic Forecasting Equations

We first modify the earlier notation to make the dependence on the horizon h explicit, rewriting

the h-period-ahead forecasting equations (2.11) and (2.10) as

yt = γ
(h)
y,kwk,t−h + ξ

(h)
y,kw̃k,t−h + ζ

(h)′
y,k xk,t−h+1 + v

(h)
y,k,t (5.1)
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πt = γ
(h)
π,kwk,t−h + ξ

(h)
π,kw̃k,t−h + ζ

(h)′
π,k xk,t−h+1 + v

(h)
π,k,t. (5.2)

We will also now need a version of equations (5.1) and (5.2) for the case h = 0, in order to

keep track of the implication of the release of one indicator for the values of other indicators to

be released later that month. Suppose that the first indicator released in month t + 1 is NFPAY,

denoted here as w1,t. That release could cause us to update our expectation of the values for

INDPRD (yt = w2,t) and CPIXFE (πt = w3,t) that will be reported later that same month t + 1

according to

yt = γ
(0)
y,1w1,t + ξ

(0)
y,1w̃1,t + ζ

(0)′
y,1 x1,t+1 + v

(0)
y,1,t (5.3)

πt = γ
(0)
π,1w1,t + ξ

(0)
π,1w̃1,t + ζ

(0)′
π,1 x1,t+1 + v

(0)
π,1,t. (5.4)

Thus for example estimates of γ(0)
y,1 and γ(0)

π,1 could be obtained by OLS estimation of (5.3) and (5.4).

Later in month t + 1 when the output indicator w2,t is released, that allows us to know the value

of yt with certainty, which to preserve the general notation we would represent by γ
(0)
y,2 = 1, and

would also induce an update to the forecast for w3,t,

πt = γ
(0)
π,2w2,t + ξ

(0)
π,2w̃2,t + ζ

(0)′
π,2 x2,t+1 + v

(0)
π,2,t (5.5)

When w3,t is finally released, it has no implications for w2,t which is already known (γ(0)
y,3 = 0) and

changes our forecast of inflation one-for-one (γ(0)
π,3 = 1).

5.2 A Dynamic Taylor Rule

Consider now the following dynamic generalization of (2.1):

rt = r+β1(πt−1−π∗t−1) +β2(πt−2−π∗t−2) + · · · + δ1(yt−1−y∗t−1) + δ2(yt−2−y∗t−2) + · · ·+ut. (5.6)

Unlike our earlier expression (2.2), equation (5.6) is strictly a backward-looking formulation, pre-

suming that the Fed responds dynamically to the history of available information; note that πt−1

and yt−1 are the most recent values available as of the end of month t.

Recall that the value of wk,t−h−1 is released on day i(k, t − h), and let f (h)
i(k),t−h denote the

interest rate implied by a futures contract for settlement based on the value of rt, and quoted as of

the end of trading on day i(k, t−h). For example, f (0)
i(k),t would reflect an expectation of the current

month’s fed funds rate on the day that the indicator wk,t−1 is released. Take the expectation of (5.6)
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conditional on market information available on day i(k, t−h) and subtract from it the expectation

formed the day before:

f
(h)
i(k),t−h − f

(h)
i(k)−1,t−h = η

(h)
r,k+ (5.7)[

β1γ
(h)
π,k + δ1γ

(h)
y,k + β2γ

(h−1)
π,k + δ2γ

(h−1)
y,k + · · ·+ βh+1γ

(0)
π,k + δh+1γ

(0)
y,k

]
(wk,t−h−1 − w̃k,t−h−1) + v

(h)
r,k,t−h.

For comparison, recalling that τ = t− h, we can rewrite equation (2.12) as

f
(h)
i(k),t−h − f

(h)
i(k)−1,t−h = η

(h)
r,k + (β(h)γ

(h)
π,k + δ(h)γ

(h)
y,k)(wk,t−h−1 − w̃k,t−h−1) + v

(h)
r,k,t−h (5.8)

where β(h) and δ(h) denote the original parameters whose estimates we reported in column h of

Tables 1 or 3. Comparing equations (5.7) and (5.8), the values of the dynamic parameters {βj , δj}

in (5.6) are related to our baseline estimates {β(h), δ(h)} according to

β1γ
(h)
π,k + δ1γ

(h)
y,k + β2γ

(h−1)
π,k + δ2γ

(h−1)
y,k + · · ·+ βh+1γ

(0)
π,k + δh+1γ

(0)
y,k = β(h)γ

(h)
π,k + δ(h)γ

(h)
y,k. (5.9)

To arrive at estimates of the dynamic parameters, we chose {βj , δj}6j=1 so as to minimize the

equally-weighted sum of squared differences between the LHS and RHS of (5.9) across indicators

k = 1, 2, 3 and horizons h = 0, 1, 2, ..., 6. On the RHS, the values for {β(h), δ(h), γ
(h)
π,k, γ

(h)
y,k} for

h = 1, ..., 6 were taken from the earlier split-sample GMM estimation reported in Table 3, while

values for h = 0 were obtained from GMM estimation of β(0), δ(0), γ(0)
y,1, γ(0)

π,1, and γ(0)
π,2 based on the

moment conditions

(
yt − γ(0)

y,1w1,t − ξ(0)
y,1w̃1,t − ζ

(0)′
y,1 x1,t+1

)
z1,t+1(

πt − γ(0)
π,1w1,t − ξ(0)

π,1w̃1,t − ζ
(0)′
π,1 x1,t+1

)
z1,t+1[

f
(0)
i(1),t+1 − f

(0)
i(1)−1,t+1 − η

(0) − (β(0)γ
(0)
π,1 + δ(0)γ

(0)
y,1)(w1,t − w̃1,t)

]
z1,t+1(

πt − γ(0)
π,2w2,t − ξ(0)

π,2w̃2,t − ζ
(0)′
π,2 x2,t+1

)
z2,t+1[

f
(0)
i(2),t+1 − f

(0)
i(2)−1,t+1 − η

(0) − (β(0)γ
(0)
π,2 + δ(0)γ

(0)
y,2)(w2,t − w̃2,t)

]
z2,t+1[

f
(0)
i(3),t+1 − f

(0)
i(3)−1,t+1 − η

(0) − (β(0)γ
(0)
π,3 + δ(0)γ

(0)
y,3)(w3,t − w̃3,t)

]
z3,t+1


(5.10)

where as before zk,t+1 denotes information available the day prior to release of wk,t. This last GMM

estimation resulted in the estimates β̂
(0)

= 0.3629, δ̂
(0)

= 0.1745 for the pre-2000 subsample, and

β̂
(0)

= .0424, δ̂
(0)

= 0.0031 after 2000. For all the above calculations, the values γ(0)
y,2 = 1, γ(0)

y,3 = 0,

and γ
(0)
π,3 = 1 were imposed throughout.

The resulting values of βj and δj are reported in Table 4. In the last column is the sum of the
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Table 4: Dynamic Taylor Rule Parameters

j
1 2 3 4 5 6 7 sum

Pre-2000 βj 0.3629 –0.0009 0.8859 –0.0994 0.2395 –0.0542 –0.0464 1.2874
δj 0.1760 –0.0102 –0.0147 0.0399 0.1692 –0.0674 –0.0343 0.2585

post-2000 βj 0.0848 0.0830 0.3642 0.2760 0.4918 –0.1552 0.4330 1.5780
δj 0.0060 0.0140 –0.0040 –0.0414 0.0442 0.0302 0.0102 0.0592

Notes: from minimum-distance method described in text, using subsample parameter estimates across all horizons.

parameter values across all j, which gives the long-run response to the inflation or output pressure.

Recall from Section 3.1 that the parameter vector θ(h) for horizon h was estimated completely

independently from any other horizon. This approach of leaving the dynamics implied by {θ(h)}6h=0

completely unrestricted offers at least two benefits. First, nothing in our procedure requires that

the long-horizon responses should be bigger than the short-horizon responses. The fact that we

nonetheless find them to be increasing in h is strong evidence that the market perceives policy to

respond only gradually to changing conditions. Second, our procedure allows the adjustment to

inflationary pressures to differ from the adjustment to real activity, similar to the policy rules of

Christiano, Eichenbaum, and Evans (1996, 2005). Table 4 implies different paths in the response

of policy to inflation and output. For example, the pre-2000 response to inflation jumps up at the

three-month lag (j = 3) while the response to output stays relatively steady until the 5-month lag

(j = 5). This flexibility in the rule’s process is greater than that permitted by including only lags

of the policy rate itself, and our estimates suggest this greater flexibility is warranted by the data.

5.3 Implications of changes in the dynamics

We now explore the implications of the estimated changes in the Taylor Rule for the consequences

of monetary policy. Following Clarida, Gali, and Gertler (2000), we use a standard sticky-price,

rational expectations model whose equilibrium conditions, log-linearized around a zero inflation
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steady state, are

πt = λ1Et(πt+1) + λ2(yt − zt) (5.11)

yt = Et(yt+1)− λ−1
3 (rt − Et (πt+1)) + gt (5.12)

rt = β(L)πt + δ(L)(yt − zt) (5.13)

The first equation (5.11) says that inflation today is a function of the output gap and the expectation

of next period’s inflation, which in turn can be derived from an underlying Calvo pricing structure.

With relative risk aversion measured by λ3, equation (5.12) is an IS schedule where today’s output

depends on the ex ante real rate and the expectation of next period’s output gap. Equation (5.13)

is a dynamic Taylor Rule that closes the model. The model is driven by autocorrelated demand

shocks gt and supply shocks zt with the same unconditional variance. We take parameter values

from Clarida, Gali, and Gertler (2000) and set λ1 = 0.9967, λ2 = 0.3, λ3 = 1, and the shocks’

autocorrelation to 0.9655 in our monthly model.

Our goal is to characterize what difference the inflation-response parameters β(L) might make

for the volatility of macro variables according to this model. To do so, we fix δ(L) at the pre-2000

values, and calculate the difference in volatilities using pre-2000 and post-2000 values for β(L).

We find that the post-2000 dynamics imply a 41.2% reduction in the variance of inflation, a 0.2%

reduction in the variance of output, and a 33.5% reduction in the variance of the fed funds rate.

Alternatively, we fixed the output dynamics δ(L) at the post-2000 values, and calculated how much

difference the change in inflation dynamics β(L) made for that specification, with very similar

results. These comparisons are reported in the last column of Table 5.

We next wanted to see what it was about the post-2000 inflation response that helped stabilize

inflation. Was it the overall magnitude of the inflation response, as reflected in the sum of the βj

coefficients, or was it the more gradual post-2000 response, as reflected in the shape of the dynamic

response? To find out, we explored the consequences of changing just one of these two elements at

a time. Let βpre
j denote the pre-2000 inflation responses and βpost

j the post-2000 responses. We

calculated what would happen if the inflation responses were given by

βj = βpost
j

[βpre
0 + βpre

1 + . . .+ βpre
6 ]

[βpost
0 + βpost

1 + . . .+ βpost
6 ]

so that the sum of the coefficients βj was restricted to be the same as for the pre-2000 estimates,

while the shape of β(L) was that for the post-2000 estimates. These results are reported in the
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Table 5: Effects of Changing Inflation Policy Response

Inflation Coefficients

Variable Output Coefficients
Pre Path,
Pre LR

Post Path,
Pre LR

Pre Path,
Post LR

Post Path,
Post LR

Percentage Change in Volatility from Benchmark

π
Pre
Post

0
0

−8.7
−7.9

−39.3
−40.6

−41.2
−41.4

y
Pre
Post

0
0

+24.2
+30.9

−17.4
−21.0

−0.2
+0.7

r
Pre
Post

0
0

−14.0
−15.7

−26.3
−27.6

−33.5
−35.6

Notes: volatilities of endogenous variables of the sticky-price model described in text. Dynamic Taylor Rule coeffi-
cients in Table 4. Pre Path, Pre LR is benchmark using the dynamic Taylor Rule derived from pre-2000 estimates.
Post Path, Pre LR uses the dynamic Taylor Rule derived from post-2000 estimates, with inflation coefficients
multiplied by the ratio of the pre-2000 long-run inflation response to the post-2000 long-run inflation response. Pre
Path, Post LR uses the dynamic Taylor Rule derived from pre-2000 estimates, with inflation coefficients multiplied
by the ratio of the post-2000 long-run inflation response to the pre-2000 long-run inflation response. Post Path,
Post LR uses the dynamic Taylor Rule derived from the post-2000 estimates. These inflation coefficient modifica-
tions are considered holding constant the output coefficients at the pre-2000 values in rows marked Pre, and at the
post-2000 values in rows marked Post.

column labeled “post-path, pre-LR” in Table 5. Such a change would have only modestly improved

the variance of inflation, and would have resulted in a significant deterioration in the variability of

output.

On the other hand, if we change just the long-run response, but leave the dynamics the same

as for the pre-2000 rule,

βj = βpre
j

[βpost
0 + βpost

1 + . . .+ βpost
6 ]

[βpre
0 + βpre

1 + . . .+ βpre
6 ]

,

as reported in the “pre-path, post-LR” column of Table 5, we would have achieved the full benefits

of inflation stabilization as well as additional benefits of output stabilization.

Thus the key improvement in perceived monetary policy was a stronger long-run response to

inflation. The fact that the market also perceives these responses to come more slowly in the

post-2000 data has in fact been counterproductive.

A lesson from this basic New Keynesian analysis is the following. Increasing the long-run

magnitude of inflation response, as the market perceives the Fed to have done, had a stabilizing

effect both on inflation and output. Implementing the response more slowly, as the market also

perceives the Fed to have done, counteracted what otherwise would have been a benefit for output

volatility of the stronger eventual inflation response. The “measured pace” of monetary tightening
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Table 6: Specification Tests

h
1 2 3 4 5 6

(4) K=2, pre 0.0939 0.1061 0.1113 0.0975 0.0957 0.0956
(5) K=2, post 0.0781 0.0707 0.0721 0.0649 0.0650 0.0705
(6) MGDP, pre 0.3422 0.3681 0.3723 0.3725 0.3765 0.3974
(7) MGDP, post 0.3015 0.2816 0.2719 0.2850 0.2857 0.2859
(8) Cross, pre 0.9878 0.9668 0.9185 0.9961 0.9829 0.9985
(9) Cross, post 0.9999 0.9869 0.9488 0.9999 0.9999 0.9999

Notes: p-values from Hansen’s (1982) J-test of overidentifying restrictions, for various alternate specifications. K=2,
pre and K=2, post use only two indicators (CPIXFE and INDPRD). MGDP, pre, and MGDP, post use monthly
GDP instead of Industrial Production as the output variable. Cross, pre and Cross, post tests the cross-equation
restriction that the average risk premium change is identical across indicators.

during 2004-2006 could thus have been a factor contributing to unnecessary volatility of output –

doing the same thing more quickly might have produced a better result.

6 Sensitivity Analysis

We next investigate the sensitivity of our results to using alternative economic indicators, test the

cross-equation restrictions imposed, and look for corroboration of the identifying assumptions from

other data sources.

6.1 Results for Alternative Economic Indicators

Here we analyze the sensitivity of our baseline results to the data used. First, we report results using

only two indicators. Second, we report results using monthly GDP, as calculated by Macroeconomic

Advisers, instead of industrial production to measure monthly output. Given the strong evidence

of a parameter break, we consider these alternate specifications estimated separately over the two

subsamples. Table 6 displays the overidentification test results while Table 7 presents the response

coefficient estimates.

Specifications (4) and (5) of Table 7 suggest that the nonfarm payrolls indicator provides useful

variation to the estimation. In its absence, the parameter estimates are less precisely estimated at

several horizons. We still estimate a pre-2000 steeply adjusting inflation response, nearly identical

to the baseline pre-2000 estimates. And again the pre-2000 output response, when statistically

significant, looks to be modest. However, the longer horizon estimates are accompanied by large
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Table 7: Market-Perceived Monetary Policy Rule Estimates, alternate specifica-
tions

h
1 2 3 4 5 6

(4) K=2, pre β 0.3655* 0.8756** 1.1693** 1.1302* 1.0811 1.3718
0.1451 0.2245 0.3877 0.4897 3.6476 1.9668

δ 0.0628** 0.0487** 0.1386 0.1338 0.1875 0.1984
0.0136 0.0166 0.0762 0.1227 0.6804 0.3485

(5) K=2, post β -0.0737** 4.7939 0.9579 -0.0881 1.0009 2.6046
0.0255 60.3866 1.5374 0.1503 1.5029 18.1027

δ 0.0111** 0.1660 -0.0357 0.0253 0.0643 0.2120
0.0038 2.0437 0.1054 0.0208 0.0329 1.2092

(6) MGDP, pre β 0.4059 0.9063** 1.1353** 1.1681** 1.1832* 1.4515
0.2170 0.1916 0.2419 0.2716 0.4921 0.9977

δ 0.2140** 0.0848** 0.2163** 0.3608** 0.3795** 0.5833**
0.0615 0.0197 0.0418 0.0593 0.1101 0.1910

(7) MGDP, post β 0.0012 0.3985** 0.3923** 0.1520* 0.9583** 1.8190**
0.2929 0.0818 0.0984 0.0667 0.1467 0.5357

δ 0.2986 0.0063 -0.1860** -0.1570* 0.0923 0.0533
0.1678 0.0448 0.0706 0.0721 0.0752 0.1134

(8) No cross, pre β 0.3606 0.8534* 1.2100* 1.2124 1.1126 1.3821
0.2435 0.4101 0.5341 0.8613 0.5899 0.9823

δ 0.1548** 0.1316** 0.2615** 0.3970** 0.3857* 0.5746**
0.0369 0.0364 0.0841 0.1220 0.1509 0.2012

(9) No cross, post β 0.1425** 0.3656* -1.1842 0.5738** 0.8037** 2.0393
0.0542 0.1455 0.6257 0.1802 0.2048 1.0932

δ 0.0368** 0.0037 0.1361* -0.0559 0.0409 -0.0691
0.0126 0.0091 0.0621 0.0337 0.0306 0.0793

Notes: The policy rule coefficient on inflation is β and on the output gap is δ. HAC standard errors in italics. The
markers * and ** denote significance at 5% and 1% levels, respectively. See the notes for Table 6 or the text of
Section 6 for descriptions of the alternate specifications. Point estimates and standard errors from two-step nonlinear
GMM. Data run over 1994:M1-2007:M7

standard errors, rendering them statistical insignificant. Still, the overidentifying tests in Table 6

fail to reject at the 5% level.

Specifications (6) and (7) of Table 7 give evidence that our baseline results are robust to other

measures of output. The pre-2000 output response coefficients are very similar to the baseline, with

a slightly larger 0.21 response at the one-month horizon and virtually unchanged 0.58 response at

the six-month horizon. The profile for the post-2000 response is similar to the baseline results,

again with the three- and four-month horizon responses wrongly signed. Tests of the overidentifying

restrictions in Table 6 are quite supportive of the assumptions.
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6.2 Tests of Cross-Equation Restrictions

In addition to the average change in the risk premium on fed funds futures contracts, the constant

term ηr,k in equation (2.12) would incorporate any non-zero mean for the specification error that

represented day-to-day changes in the market forecasts of potential output, the inflation target,

and the policy rule residual (see expression (2.9)). If this constant terms turned out to be different

for different indicators k, that could be evidence of general mis-specification. For example, if the

indicators were in part providing signals about changes in potential output, and if the value of this

signal differed across indicators, that might show up as differences in ηr,k across different k.

It is easy to conduct tests of the restriction (4.1) that the policy rule constant is identical across

indicators based again on Hansen’s J-statistic

TQ
(
θ̂

(h)
R ,Y(h)

T

)
− TQ

(
θ̂

(h)
U ,Y(h)

T

)
≈ χ2(2)

where θ̂R is the GMM parameter estimate subject to the cross-equation restriction ηr,1 = ηr,2 = ηr,3

and θ̂U is the unrestricted estimate. The p-values for this test are reported in rows 8 and 9 of Table

6. The restrictions are quite consistent with the data.

The unrestricted policy parameter estimates from θ̂U are reported in rows 8 and 9 of Table 7.

Nothing substantive is lost, and statistical precision is noticeably gained, by imposing the cross-

equation restriction that the policy rule constant is identical across economic indicators. Comparing

rows 8 and 9 of Table 7 to Table 3, one sees that estimating separate policy rule constants reduces

the statistical precision with which we estimate the policy rule response coefficients, in particular

the inflation response coefficients at longer horizons.

6.3 Potential Output and the Inflation Target

A challenge for standard methods of estimating monetary policy rules is the difficulty in measuring

potential output y∗t and the inflation target π∗t . We have argued that our approach can avoid these

problems to the extent that the daily news items of which we make use have negligible consequences

for y∗ or π∗. Here we provide additional evidence on why we believe that is a reasonable assumption.

To explore this issue empirically, we will be looking at the properties of the Congressional Budget

Office’s series for quarterly potential real GDP growth, denoted y∗q where q indexes quarters. If

one looks at the historical values of this series as reported in the January 2009 vintage, y∗q is an
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extremely smooth and highly predictable series. However, over time the CBO will make many

revisions to its estimate of the value of y∗q for a given historical quarter q. For example, on April

17, 1996, CBO estimated the growth rate of potential GDP for q = 1995:Q4 to be 1.98% (at an

annual rate), whereas by January 8, 2009, they had revised the estimate for y∗1995:Q4 up to 2.76%.

Orphanides (2001) and Orphanides and van Norden (2002) demonstrated that such revisions can

pose a big problem for traditional Taylor Rule estimates. Is it reasonable to assert that the daily

news events exploited in our analysis had negligible implications for these subsequent revisions of

potential GDP?

Let Ω(q) denote the information set available to the public as of the 20th calendar day of

the first month of quarter q + 1. For example, for q = 1995:Q4, Ω(q) would represent information

publicly reported as of January 20, 1996. By this date, values for the percentage growth in nonfarm

payrolls for each month of quarter q would have been reported, denoted x1q|Ω(q), x2q|Ω(q), and

x3q|Ω(q), though the actual GDP growth rate for quarter q would not yet be known. Thus for

example for q = 1995:Q4, x1q|Ω(q) would be the growth rate of seasonally adjusted nonfarm payroll

employment during the month of October 1995 as reported by the Bureau of Labor Statistics on

January 6, 1996, while x2q|Ω(q) would be the November 1995 growth rate as reported on January

6. Let {y∗q−1|Ω(q), . . . , y
∗
q−4|Ω(q)} denote the four most recent quarterly growth rates for potential

GDP as they would have been reported by CBO prior to date Ω(q); for example, for q = 1995:Q4,

y∗q−1|Ω(q) is the potential growth rate for 1995:Q3 as estimated by CBO on February 1, 1995 (the

most recent CBO estimate released prior to January 20, 1996). Finally, let y∗q|T denote the potential

GDP growth rate for quarter q as reported on January 8, 2009. Vintage values for xiq|Ω(q) and

y∗q−j|Ω(q) were obtained from ALFRED, the real-time archived data set maintained by the Federal

Reserve Bank of St. Louis.

We then estimated the following regression by OLS for q = 1994:Q1 to 2007:Q3:

y∗q|T = α0 +
3∑
j=1

αjxjq|Ω(q) +
4∑
j=1

γjy
∗
q−j|Ω(q) + εq.

The coefficients αj can tell us the extent to which the values of nonfarm payroll growth that

arrive during quarter q could help predict the potential GDP growth rate for quarter q as it would

ultimately be reported, relative to information about potential GDP that had arrived prior to

the quarter’s actual GDP report. We fail to reject the null hypothesis that α1 = α2 = α3 = 0
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(F (3, 46) = 0.27, p = 0.85). On the other hand, a parallel regression for predicting the actual real

GDP growth rates as eventually reported,

yq|T = α̃0 +
3∑
j=1

α̃jxjq|Ω(q) +
4∑
j=1

γ̃jyq−j|Ω(q) + ε̃q,

leads to rejection of H0 : α̃1 = α̃2 = α̃3 = 0 (F (3, 46) = 3.37, p = 0.03). Nonfarm payrolls contain

useful information about the current quarter’s actual GDP growth but little information about the

current quarter’s potential GDP growth.

We repeated the same calculations using monthly industrial production growth rates in place

of nonfarm payroll employment growth.12 We again found that industrial production is of no use

in predicting potential GDP (F (3, 46) = 0.98, p = 0.41), but is helpful for predicting actual GDP

(F (3, 46) = 4.06, p = 0.01). Our maintained assumption that markets are responding to news

about near-term economic conditions yt+h and not potential output y∗t+h is thus fully consistent

with these hypothesis tests.

As far as the inflation target is concerned, the validity of our identifying assumption seems even

more compelling. Although there may be changes in the Fed’s inflation objectives over time, the

suggestion that the FOMC is changing its long-run inflation target on a daily basis in response

to the latest economic news would seem quite strange to those who actually implement monetary

policy. Apart from the discrete effects of personnel changes, the Fed’s long-run inflation target

should be by definition an even smoother series than potential GDP.

7 Conclusion

It is important to be able to measure market participants’ beliefs, manifest through their behavior,

about how monetary policy is conducted. Previous work has identified futures contract prices

as powerful predictors of their underlying; in particular, fed funds futures contracts are good

predictors of future Federal Reserve policy. This paper proposed that market participants forecast

future policy along with future economic conditions, and linked the two by the Taylor Rule. This

enabled us to measure the market’s beliefs about how the Federal Reserve responds to inflation and

the output gap. Additionally, by focusing on daily forecast updates, we are able to nearly eliminate
12Release of the December 1995 value for industrial production was delayed until January 24, 1996. We used this

January 24, 1996 release for q =1995:Q4.
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the impact of potential output and the inflation target on our main focus: the market-perceived

monetary policy response to inflation and output.

Our baseline results for the 1994–2007 sample suggest the market perceives that the Federal

Reserve gradually responds to inflation and real activity. Similar to previous literature working on

post-Volcker data, we find the Federal Reserve follows the Taylor Principle, a greater than one-for-

one response to inflation. We also find evidence that the market-perceived monetary policy rule

changed over our sample. During the 1990s market-perceived policy responded robustly to output

and quickly to inflation; during the 2000s market-perceived policy doesn’t respond to output and

responds at a more measured pace to inflation, though its long-run inflation response is greater

than before. We quantify the importance of the inflation response path and long-run magnitude

in a standard model, and find that raising the long-run magnitude is effective at lowering inflation

volatility while making the path more gradual is counterproductive. Our baseline results were

found to be robust to alternative possible specifications.
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A Appendix

A.1 Tables and Figures

Table A1: Policy Rule Constant Estimates

h
1 2 3 4 5 6

Baseline ηr -0.4024** -0.4750** -0.6223** -0.5060** -0.6844** -0.6056**
0.0787 0.1031 0.1351 0.1223 0.1041 0.1046

Baseline, pre ηr -0.4085** -0.4744** -0.6187** -0.5288** -0.7056** -0.6310*
0.0897 0.0693 0.1050 0.1459 0.2027 0.2691

Baseline, post ηr -0.4228** -0.5163** -0.6179** -0.5194** -0.6075** -0.6850**
0.1174 0.1545 0.0924 0.1440 0.1945 0.1587

Notes: ηr is the average risk premium change. HAC standard errors in italics. The markers * and ** denote
significance at 5% and 1% levels, respectively. Point estimates and standard errors from two-step nonlinear GMM.
Data run over 1994:M1-2007:M7
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Figure A1: Trading Volume on Fed Funds Futures Contracts
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Notes: Data from Chicago Board of Trade. As quarterly average.
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