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Abstract

It is surprising that the prevailing performance taxonomy for scientists (Star versus Non-Star)
focuses only on individual output and ignores social behavior since, innovation is often charac-
terized as a communal process. To address this deficiency I expand the traditional taxonomy
that focuses solely on productivity and add a second, social dimension to the taxonomy of sci-
entists: helpfulness to others. Using academic paper citations to capture scientist productivity
and the receipt of academic paper acknowledgements to measure helpfulness, I classify a group
of 415 immunologists into four distinct categories of human capital quality: All-Stars who have
both high productivity and helpfulness; Lone Wolves who have high productivity but average
helpfulness; Mavens who have average productivity but high helpfulness; and Non-Stars who
have both average productivity and helpfulness. Looking at the change in quality-adjusted pub-
lishing output of an immunologist’s coauthors after the immunologist’s death, I find that the
productivity of coauthors of All-Stars decreases on average by 35%, coauthors of Mavens by 30%
on average, and the coauthors of Lone Wolves by 19%, all relative to the decrease in productiv-
ity of coauthors of Non-Stars. These findings suggest that our current conceptualization of star
scientists, which solely focuses on individual productivity, is both incomplete and potentially
misleading as Lone Wolves may be systematically overvalued and Mavens undervalued.
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1 Introduction

The need to hire the best and the brightest - “the war for talent” - has long been one of the

most pressing strategic concerns facing managers (Kapur and McHale 2005, Guthridge, Komm,

and Lawson 2008). This concern is largely driven by the observation that high performers, or stars,

account for the generation of a disproportionately large level of output. Google’s vice-president of

engineering, Alan Eustace, noted to the Wall Street Journal in 2005 that “one top-notch engineer

is worth 300 times or more than the average” and that he “would rather lose an entire incoming

class of engineering graduates than one exceptional technologist” (Tam and Delaney 2005). Why

is this? How do stars so greatly influence the performance of organizations?

The existing performance taxonomy for scientists focuses exclusively on individual output, clas-

sifying a scientist as either a Star or a Non-Star. The seminal work of Zucker, Darby, and Brewer

(1998), for example, defines stars as the top 0.75% of contributors to the genetic sequence database

GenBank, a group that accounts for almost 17% of contributions. Recent work by Groysberg,

Lee, and Nanda (2008) examines the skill portability of the top 3% of security analysts when they

move firms using a ranking of the perceived effectiveness of security analysts, while Azoulay, Graff

Zivin, and Wang (2008) look at the impact of eminent scientists using a variety of measures such as

research funding, citations, and patenting. In all of these articles, the definition of a star is based

solely on individual productivity; in other words, we define stars by what they physically produce.1

This uni-dimensional classification of star scientists is surprising as innovation is most often

characterized as a communal process. Communal interactions matter for two reasons. First, inno-

vation is more often a result of the recombination of existing knowledge and ideas rather than the

discovery of something fundamentally novel (Gilfillan 1935, Nelson and Winter 1982). As knowl-

edge frontiers continue to expand, combinations of increasingly specialized levels of human capital

are required to reach the forefront of knowledge (Wuchty, Jones, and Uzzi 2007, Jones 2009). It is

this recombination of specialized ideas, either through formal collaborations (coauthorships, joint

ventures, etc.) or informal means (discussions and comments from helpful individuals), that leads
1While I am unable to directly measure individual productivity, I assume that an individual’s inputs are uniform

and constant and thus use the term productivity as a measure of an individual’s output.
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to innovation. Second, the exchange of knowledge is to a large extent governed through social

channels. Individuals possess only finite levels of knowledge, and knowledge search is costly. So-

cial forces can reduce barriers to knowledge flow through geographic proximity (Jaffe, Trajtenberg,

and Henderson 1993), labor mobility (Almeida and Kogut 1999, Oettl and Agrawal 2008), inter-

personal networks (Singh 2005), and membership in ethnic communities (Agrawal, Kapur, and

McHale 2008).

While innovation is a communal process, the inability for parties to perfectly contract on knowl-

edge exchange leads to failures in the market for knowledge and a decrease in knowledge transfer

(Arrow 1962). As such, conditions that facilitate knowledge sharing or spillovers in the absence of

formal contractual environs are of great value to firms. Ultimately, if our concern is to understand

the mechanisms by which an individual maximizes his performance, simply understanding the pro-

ductivity inputs of an individual would suffice. However, the strategy and economics literatures

focus on performance measures at the organization and regional levels, and as such, mechanisms

in which individuals influence the productivity of others become important as these mechanisms

directly influence the performance of organizations and regions. Hence, mechanisms by which in-

dividuals improve the performance of others are of paramount concern to scholars of strategy and

economics.

The importance of social factors on innovation illuminates the deficiency of our current productivity-

focused conceptualization of star scientists (Stars versus Non-Stars). To expand our current con-

ceptualization of star scientists, I develop a new taxonomy of star scientists by incorporating a

social dimension: helpfulness to others. This new taxonomy allows an individual to not only vary

along a productivity dimension but also a helpfulness dimension.

The objective of this chapter is threefold. First, I expand upon the current dichotomous con-

ceptualization of stars by developing a taxonomy that not only incorporates a star’s individual

productivity but also his helpfulness. In doing so, I move beyond the current uni-dimensional

classification and redefine what it means to be a star. Second, I propose a measure to classify indi-

viduals into this new taxonomy. Third, I use this taxonomy to assess the extent to which different

star types influence the productivity of others.
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Following prior studies (Allison and Long 1990, Azoulay, Graff Zivin, and Wang 2008), I measure

individual productivity using Impact Factor-weighted publication counts.2 On the other hand,

I measure helpfulness by academic journal acknowledgements, since such acknowledgements are

generally made to those who have helped in the development of the work. Using these measures of

productivity and helpfulness, I classify a sample of 415 immunologists and examine their influence

on the productivity of their coauthors. I use coauthorship to pinpoint the timing of the formation

of an interpersonal tie between an immunologist and a potential recipient of performance benefits.

It is this co-location in social space that allows stars to impact the performance of their peers.

By placing a star in both productivity and helpfulness space while keeping the classifications

discrete, I am able to classify an individual as one of four types: All-Star, Lone Wolf, Maven, or

Non-Star.

I define an All-Star as an individual with both high productivity and high helpfulness. A Lone

Wolf is someone who has high productivity but average helpfulness. A Maven is an individual

with average productivity but high helpfulness, and a Non-Star has both average productivity and

average helpfulness. Restrictively, the current dichotomous conceptualization of stars groups both

All-Stars and Lone Wolves together, while completely overlooking Mavens. By expanding on the

current classification, I am able to examine the influence of individuals who vary in both their

productivity and helpfulness.

Examining the changes in productivity from coauthoring with various star types would be an

appropriate empirical exercise if coauthoring relationships were chosen at random, but clearly they

are not. The problem with endogenous coauthor selection is that the coauthors selected by an

immunologist may be chosen due to their own productivity, thus producing spurious correlations

between an individual’s productivity and their coauthorship network. For this paper, I examine

the decrease in productivity of coauthors when an immunologist dies.

Across a number of specifications, the performance of the coauthors of All-Stars who die de-

creases on average by 35% relative to the decrease in performance when a Non-Star dies. More
2The Impact Factor is a time-varying journal-level measure of quality, which captures the rate at which each

article in the journal is cited. Thus, journals with articles that are cited more often will have higher Impact Factors.
The Institute for Scientific Information (ISI), a subsidiary of Thomson Scientific, constructs this measure annually.
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interestingly, coauthors of Mavens who die experience a 30% decrease in performance, while the

coauthors of Lone Wolves who die experience decreases in performance of only 19% on average.

By expanding the current conceptualization of star scientists and focusing on both the pro-

ductivity and helpfulness dimensions of scientists, I find that spillovers are most likely generated

from individuals with high helpfulness. As a result, the literature has largely overemphasized the

importance of Lone Wolves yet has overlooked and consequently underemphasized Mavens.

2 Star Scientists and Spillovers

While the quality of human capital may be uniformly distributed, the returns to human capital

are wildly skewed (Ernst, Leptien, and Vitt 2000). Individuals in the right tail of the distribution,

so-called stars, generate a disproportionately large share of output (Rosen 1981). As Lotka (1926)

observed, the top 6% of physicists produce more than 50% of all papers. This skewed distribution -

termed the Pareto Principle - is ubiquitous across industries and is a strong determinant of inventive

productivity (Narin and Breitzman 1995). However, as I argue, even though stars contribute

disproportionately to output production, they cannot alone act as a source of sustained competitive

advantage.

In the resource-based view (RBV) of the firm, firms generate sustainable competitive advantage

through their use of strategic resources (Wernerfelt 1984). Resources are only sources of sustainable

competitive advantage, however, if they are valuable, rare, inimitable, and difficult to substitute

(Barney 1991). In efficient factor markets, a star will be perfectly compensated for his productivity

(Hirshleifer, Glazer, and Hirshleifer 1998), suggesting that they cannot be a source of rents for the

firm. The resource-picking literature, nonetheless, theorizes that firms can capture economic rents

by employing superior information or analysis to pick undervalued resources in the factor market,

much in the same way that a fund manager attempts to outsmart the financial markets by picking

stocks (Barney 1986, Makadok 2001). The central assumption of this resource-picking mechanism

is that the factor markets must be characterized by imperfect information, thus providing a forum

for a firm with superior information to pick undervalued resources. While this situation may well

exist in a number of factor markets, it seems unlikely to exist in the market for stars, as the output
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of stars is both easy to measure and highly visible. Consequently, the likelihood of a star being

mispriced is low, rendering the resource-picking mechanism ineffective at generating sustainable

competitive advantage. Furthermore, because of the high visibility of the output of stars, stars

themselves are more mobile, further attenuating the value of stars as resources (Lazear 1986).

Human capital, however, can be important for firm strategy in ways other than generating direct

output: human capital can generate spillovers. Since the early work of Lucas (1988) human capital

spillovers have been at the center of economic growth models. Lucas classifies human capital

into two types: internal and external. Internal effects of human capital capture the extent to

which human capital affects the individual’s own productivity, while the external effects of human

capital capture the influence individuals have on the performance of others. If these external

effects generate an unpriced spillover onto the productivity of others, then the spillover constitutes

an externality (Acemoglu 1996). The notion that these human capital externalities and their

effect on the increase in knowledge stocks can lead to increasing economic returns is captured

by the endogenous growth theory of Romer (1990). As knowledge flows and spillovers lie at the

center of many of our models of innovation (Audretsch and Feldman 1996) and as human capital

externalities are a key input in the generation of knowledge flows, understanding the parameters

within which human capital spillovers are generated is of utmost importance. In addition, from a

firm strategy standpoint, human capital spillovers may be more difficult to observe, thus allowing

for the possibility of resource picking and conversely serving as a source of sustainable competitive

advantage.

Despite the importance of human capital spillovers, the strategy and economics literature has

mostly focused on the skewed nature of the productivity distribution when examining the rela-

tionship between stars and performance. The seminal work of Zucker, Darby, and Brewer (1998)

reports strong correlations between the location of star scientists and the formation of biotechnol-

ogy ventures. In more recent work, Groysberg, Lee, and Nanda (2008) examine the firm specificity

of the human capital of stars. They find that much of the performance premiums accruing to stars

is firm specific and that when stars move, their productivity decreases. In a related work, Brown

(2008) explores the relationship between effort exertion and differences in relative ability. Using a
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sample of professional golfers, Brown finds that golfers exert less effort in the presence of a star

(Tiger Woods), thus indicating that the presence of stars can have a negative effect on organiza-

tional outcomes. None of these studies, however, explicitly examines these stars’ human capital

spillovers.

One notable and important exception is the work of Azoulay, Graff Zivin, and Wang (2008),

henceforth referred to as AGW. AGW examine the effect that the death of an eminent life scientist

has on the performance of his coauthors.3 They find that, following the death of a star, coauthors’

performance decreases by 5% to 10%. Since coauthors were benefiting from their tie with a star, the

cessation of the coauthoring relationship (because of the death) ended these benefits, resulting in a

decline in coauthor performance. Their study, however, is unable to rule out two possibly conflating

effects. First, because their sample consists only of the top 5% of life scientists who died and their

analysis solely examines the influence of those deaths on the performance of their coauthors, they

are unable to examine the impact non-stars have on the performance of others, as non-stars are

not included in the sample. As such we are unable to determine how much greater the performance

benefits from stars are than non-stars. They do show evidence that coauthor performance gains

are increasing in a scientist’s citations, but this is still conditioned on being in the top 5%. Second

and in a related vein, without the inclusion of different star types in their sample, they are unable

to disentangle the decrease in performance of coauthors that is due to the loss of an intellectual

link versus the decrease in performance arising from the emotional toll of the death of a former

colleague. Lastly, they do not have access to pricing data and as such cannot properly determine

whether or not the changes in the performance of their sample’s coauthors are spillovers.

This paper builds upon and extends the pioneering work of AGW by developing a new taxonomy

of star scientists that allows for more precise identification of star scientists of different productivity

types and examines the conditions under which stars are more likely to impact the performance of

their coauthors.
3AGW classify a scientist as eminent if he matches a number of performance-related criteria. In general, one can

view these life scientists as being in the top 5% of the life scientist productivity distribution.
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3 A New Taxonomy of Star Scientists

The difficulty in finding empirical examples of human capital externalities is due to the uneven

distribution of the externality generating process. In others words, not all individuals have an

equal impact on the performance of others. The current strategy and economics literature classify

stars along a single dimension - productivity. That is, an individual is classified a star if he

falls in the right tail of some productivity distribution, normally output. For example, Zucker,

Darby, and Brewer (1998) classify the top 0.75% of GenBank contributors as stars. Yet if social

behaviors influence the impact that stars have on the performance of others, then including a

dimension of social behavior in our conceptualization of star scientists is surely needed. I extend

our current conceptualization of star scientists that solely focuses on productivity and add a second,

social dimension to the taxonomy of scientists: helpfulness. Where productivity encapsulates an

individual’s output that is beneficial to himself, helpfulness encapsulates an individual’s output

that is beneficial to others.

Examining the helpfulness of individuals in organizations is a well-trodden research stream. A

large amount of literature on organizational psychology examines what is known as Organizational

Citizenship Behavior (OCB) (Smith, Organ, and Near 1983). The literature finds that a combina-

tion of altruism and courtesy greatly influences the level of helpfulness individuals extend to one

another within organizations. A large literature in social psychology exists on the personality char-

acteristics associated with helpful behavior. Among the many factors that influence an individual’s

helpfulness, three are most applicable to the setting of academic scientists: situational, social, and

person factors. Situational factors deal with the costs associated with helping, social factors involve

the influence of social norms on helpful behavior, and person factors capture the prosocial traits

of an individual. I believe that holding situational and social factors constant within my setting

of academic scientists is acceptable, and as such, person factors (which are innate) should be the

only traits that influence helpfulness within my study (Fletcher and Clark 2003). Consequently, I

take helpfulness to be an innate, continuous measure that captures an individual’s output that is

beneficial to others.

To provide a more concrete description of what helpfulness in the sciences entails, below are
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some quotes from the obituaries of Maurice Landy and D. Bernard Amos, two scientists who are

members of my empirical sample and both of whom are in the top 5% of the helpfulness distribution.

On Maurice Landy:

“During his last year, Maurice Landy was a member of my laboratory, where he gave

generously of his wisdom and experience. He was particularly attentive to younger

scientists, teaching them to present their work in its optimal light and to respect and

critically enjoy the work of others. Friends are valued for much more than just their con-

tributions to knowledge. Thusly, Maurice, as a friend, turned our failures into successes,

our parochialisms into worldliness, and our desperations into hopes. He demanded the

best out of us and enjoyed our accomplishments as he might his own. And, in the end,

he left a memory that we all cherish.” (Lawrence and Cohn 1993)

On D. Bernard Amos:

“Bernard has had a profound impact on many individuals during his life. He has been

instrumental in the training, education and development of generations of clinical and

basic scientists.” (Tedder and Dawson 2003)

and

“Only two months before his death I asked him about a research problem I had en-

countered testing individuals exposed to tuberculosis that have a negative skin test. He

remembered his NLT work of 40 years earlier and suggested that I look for antibodies

to Class II and antibodies to tuberculin that could prevent delayed hypersensitivity

reactions tested by intradermal inoculation of tuberculin.” (Yunis 2004)

In comparison, the obituaries of Zanvil Cohn and Philip Gell, two immunologists in the top 5%

of the productivity distribution but not the top 5% of the helpfulness distribution, focus more on

the scholastic accomplishments of the two scholars. On Zanvil Cohn:

“His incisive manner, his admiration of clever new experiments, his sense of fairness

and respect, and his wit all will be sorely missed.” (Steinman and Moberg 1994)
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On Philip Gell:

“He was one of the founders of the British Immunological Society and started the first

postgraduate M.Sc. course in immunology in 1963, which is still running today. In this

course, and with a stream of postdoctoral fellows in his own laboratory, Gell helped to

influence many of the basic and clinical scientists, both British and international, who

lead the field today. He was elected Fellow of the Royal Society in 1969. (Silverstein

and Benacerrafe 2001)

Table 1 presents a new taxonomy for star scientists that incorporates productivity and help-

fulness. Not only does a scientist vary along a dimension of productivity, he also varies along a

measure of helpfulness. In doing so, I define three new star types. An All-Star is an individual

with both high productivity and helpfulness. A Lone Wolf is an individual with high productivity

but average helpfulness. A Maven is an individual with average productivity but high helpfulness.

A Non-Star, has both average productivity and helpfulness.

Why does this taxonomy matter? Conventionally, both All-Stars and Lone Wolves are classified

as stars as they both have high productivity. This aggregation has large strategy implications if the

effects of All-Stars and Lone Wolves on organizations vary. Mavens on the other hand are currently

classified as individuals with average productivity. But Mavens may have the largest impact on the

performance of others due to their level of helpfulness. As such, we may be overvaluing Lone Wolves

while undervaluing Mavens. Given that human capital spillovers are at the core of our innovation

and economic growth models, it is paramount to identify which inputs into the economic production

function have the potential to generate spillovers.4

4 Data

An ideal empirical setting for this study satisfies three criteria. First, it should take place in an

organizational setting where collaboration exists. As the goal of this paper is to identify which
4To be clear, this study cannot make the claim that the positive performance impact of a star on his coauthors is a

spillover as pricing data are not available for the sample studied. Chapter 3, however, includes preliminary evidence
that these performance gains may indeed be uncompensated.
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types of individuals have the largest impact on the performance of their coauthors, a setting in

which collaboration takes place is clearly necessary. Second, from a measurement standpoint, the

ability to separate individual from group or organizational level performance is necessary as the

focus of interest is on star individuals and not star teams or firms. Third, a field or discipline

that engages in the practice of manuscript acknowledgements is necessary to identify individual

helpfulness, which I will discuss in more detail later in this dissertation. A discipline that satisfies

all three of these conditions is the field of immunology.

From a research standpoint, immunology is an incredibly important discipline. The National

Institute of Allergy and Infectious Diseases (NIAID), which oversees the distribution of immunology-

related research grants, allocated $940 million to immunology research in 2005, up from $646 million

in 2003 (Hackett, Rotrosen, Auchincloss, and Fauci 2007). More importantly, however, the structure

of immunology research is organized in a very similar fashion to other medical sciences, such as

biochemistry, microbiology, and pharmacology.

4.1 Measures

One major hurdle to extending the dichotomous conceptualization of stars has been the lack of

data. I propose to use the receipt of acknowledgements as a measure of an individual’s helpfulness.

Academic acknowledgements are a central and convenient way of recognizing a non-author’s con-

tributions to the development of a manuscript without extending ownership rights in the form of

coauthorship (Merton 1973).5

The goal of this study is to classify an immunologist along the dimensions of productivity and

helpfulness and then to examine the change in output of his coauthors when he dies. I measure

productivity as the total number of citations received for papers written by the focal immunologist

prior to 1966. Citation data come from the Institute for Scientific Information (ISI) Web of Science.

I measure helpfulness as the total number of acknowledgements received by the focal immunologist
5Of course, acknowledgements can come in two forms. They may represent an acknowledgement of another author’s

useful comments (that is, the author is selected on quality) or they may accrue as a result of the author’s influence
on the publishing process, the field, etc. (the author is selected on status). While I am unable to empirically separate
out these two types of acknowledgements, “status” acknowledgements should add noise to the empirical analysis and
thus, due to attenuation bias, result in conservative estimates. I discuss this further in Section 8.
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between the years 1960 and 1965 (inclusive) in The Journal of Immunology. I choose The Journal

of Immunology because during this time period it was the pre-eminent academic journal for the

discipline of immunology.6 Acknowledgements operate very similarly in immunology as they do in

the social sciences, albeit with fewer acknowledgements per paper. Of the 1,324 articles published in

The Journal of Immunology between 1960 and 1965, 50% had at least one acknowledgement. Of the

articles that did have at least one acknowledgement, 40% of them had at least one acknowledgement

for criticism and encouragement, the measure used for this study.7 As an example, the following was

in the acknowledgement section of Bennett (1965): “The author wishes to thank Drs. L. J. Old and

E. A. Boyse of the Sloan-Kettering Institute, New York, for their suggestions and encouragement,

and Mrs. Patricia Hubertus for technical assistance.”

I measure a coauthor’s productivity by their Impact Factor-weighted publications. I obtain

Impact Factor weights from the Journal Citation Reports from the ISI, which published Impact

Factors for all immunology journals on a yearly basis between 2000 and 2007. I use the aver-

age Impact Factor across these eight years to create a time-invariant quality measure of the 136

immunology journals indexed by ISI.

I collect data on deaths in a hybrid form by way of extracting obituaries and memoriams

from the titles of over 400,000 immunology articles from the Web of Science as well as through

manual Internet searches. While ideally I would like to identify unexpected deaths so that the

“treatment” of losing a coauthor is fully exogenous, none of the deaths in my sample are of this

nature and as such may not be fully exogenous. Allowing for the possibility that the deaths

were anticipated by coauthors should generate conservative estimates of the productivity effect, as

presumably the coauthors had time to make alternate arrangements to minimize the anticipated

decrease in productivity. As such, the regression estimates should be viewed as the changes in

productivity net of an anticipation of death.
6The Journal of Immunology in 2007 had an Impact Factor of 6.068, ranking it 13th among all immunology

journals. It is, however, by far the most widely cited journal in immunology and has been in print since 1916, making
it one of the oldest immunology journals in the world. Furthermore, the Journal of Immunology was chosen at
random, and I have no reason to believe that immunologists providing feedback or criticism alter their behavior on
publications intended for the Journal of Immunology.

7Acknowledgements thanking lab technicians and assistants are removed, although my sampling process requiring
at least three lifetime publications most likely would have removed these individuals anyway.
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4.2 Sample

The sample for this study draws on all immunologists who published at least one article in an

immunology journal between 1960 and 1965, inclusive.8 There are 5,323 of these scientists. I apply

the requirement constraint that every immunologist must have at least three lifetime papers in

an attempt to remove post-doctoral students, graduate students, and any other scientists who did

not become academic scientists. This reduces my sample to 1,543 scientists. This remaining set

of scientists must meet one final criterion: they must have at least one coauthoring relationship,

formed after 1965, with a scientist who also has at least three lifetime publications. After applying

this final condition, I am left with a final sample of 415 immunologists.

I divide my sample of 415 immunologists into four discrete categories based on their location

in productivity and helpfulness space. Figure 1 graphically shows the sample’s placement. While

the constructs of productivity and helpfulness are continuous measures, the new taxonomy for star

scientists requires discrete allocations and as such a cut-off point must be established to discern

between high and average levels of productivity and helpfulness. The goal of this taxonomy is not

to quibble about cut-off points but rather to demonstrate that an individual at the extreme end

of one distribution is of a different type than the average individual in the rest of the distribution.

Therefore, I define high productivity and helpfulness as being in the top 5%, which is a similar cut

off to other studies looking at stars (Azoulay, Graff Zivin, and Wang 2008). An immunologist has

high productivity (in the top 5%) if he receives more than 2,028 citations prior to 1965, and an

immunologist has high helpfulness (in the top 5%) if he receives three or more acknowledgements

in The Journal of Immunology in the six years between 1960 and 1965, inclusive.

All-Stars are immunologists who have both high productivity and helpfulness (upper right

quadrant of the graphic). Mavens are immunologists with average productivity but high helpfulness

(upper left quadrant). Lone Wolves have high productivity but average helpfulness (bottom right

quadrant). Non-Stars have both average productivity and helpfulness (bottom left quadrant). I

show the classification of the sample in tabular format in Table 2.
8I draw the list of immunology journals from the Thomson Corporation’s ISI Web of Science database. While

I include the major immunology journals, such as The Journal of Immunology and The Journal of Experimental
Medicine, in this list, general field journals such as Nature and Science are not. Consequently, I do not use “general”
journals when constructing measures and defining the sample.
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Assigning the sample of 415 immunologists results in the following classification: four scientists

are All-Stars, five are Mavens, 16 are Lone Wolves, and 390 are Non-Stars.9 Of these 415 immu-

nologists, 28 of them have died: two All-Stars, three Mavens, five Lone Wolves, and 18 Non-Stars.

4.3 Unit of Analysis

To what extent do different star types influence the productivity of others? To answer this question,

I look at the change in performance of coauthors of stars who die. As such, my unit of analysis is an

immunologist-coauthor-year triad. The cross-sectional unit, however, is the immunologist-coauthor

dyad, where the immunologist is one of four star types.10 To identify coauthors, I identify all

coauthorships formed after 1966 with scientists who have at least three lifetime publications. The

immunologists in the sample have 58.3 coauthors on average, resulting in 24,175 immunologist-

coauthor dyads.11 The average publishing lifespan for immunology coauthors in my sample is 23.8

years, resulting in a final sample size of 575,483 observations. For the 28 immunologists who die, I

reduce the sample to 816 dyads generating a subsample of 25,968 observations.

Using 1965 as a cutoff for both the productivity and helpfulness measures allows me to hold

constant each scientist’s “type” for 1965.

While the new taxonomy for star scientists is meant to classify an individual at a given point in

time, for this paper I assume that distributions of skill along both the productivity and helpfulness

dimensions are innate and thus do not vary across my sample. By looking at all coauthorships

formed after 1965, I hold the window of evaluation constant for all star types and only focus on a

star’s influence on the performance of all new coauthors, thus reducing the likelihood that an im-
9The observant reader will notice that while the high productivity stars (All-Stars and Lone Wolves) account for

5% of the total sample ( 4+16
415

), the high helpfulness scientists do not ( 4+5
415

). The reason for this is that because of
the discrete nature of acknowledgements and the requirement that membership in the top 5% be greater than the
95th percentile cut-off values, I classify fewer than 5% of all scientists as highly helpful. When I change the cut-off
designation to define scientists in the top 5% as scientists with greater than or equal to the 95th percentile cut-off
values, the results are statistically and quantitatively largely unchanged.

10Non-Stars, the fourth type of star, are of course not truly stars, but for ease of classification I will consider them
as one of the four star types.

11What happens if a scientist is the coauthor of multiple focal immunologists? While 78% of the coauthors in
the sample only coauthor with one of the focal 415 immunologists, 15% coauthor with two immunologists in the
sample, 4% coauthor with three immunologists in the sample, and 3% coauthor with four or more immunologists in
the sample. I can adjust standard errors to account for this serial correlation. In practice, however, standard errors
that have been adjusted for both immunologist and coauthor serial correlation differ marginally from standard errors
adjusted solely for immunologists.
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munologist’s productivity and helpfulness is a function of the coauthor’s performance. In addition,

by only looking at newly formed coauthorships after immunologist types have been established in

1965, I remove the conflation of star definition with the performance of coauthors in that I only

examine the performance impact of scientists who are not coauthors of the star at the time of clas-

sification. Furthermore, to reduce the conflation of star type classification with the productivity

lifecycle of scientists, I include various age group dummies for both immunologists and coauthors

in all regression models. I further discuss estimation and control variables in Section 5.

4.4 Descriptive Statistics

Tables 3 and 4 present descriptive statistics and correlation matrices for both the full sample

of 24,175 dyads and the subsample of 816 dyads where the focal immunologist dies. For the full

sample (Table 3), the average coauthor publishes 9.737 Impact Factor weighted publications a year,

while the average coauthor of an immunologist who dies publishes on average 11.029 Impact Factor

weighted publications a year. Table 5 presents means of four performance measures split both by

the type of star the focal immunologist in the dyad is and whether or not the immunologist died.

The coauthors of All-Stars and Lone Wolves have higher average Impact Factor weighted papers

than Mavens and Non-Stars, but the coauthors of Mavens receive, on average, the most citations

for their papers. Across almost all star types and measures, the coauthors of immunologists who

die have higher output, on average, than the coauthors of immunologists who do not die.

5 Econometric Estimation

The empirical objective of this study is to examine the extent to which different star types influence

the performance of others. As discussed earlier, a star has the ability to influence the performance

of individuals across multiple levels: coauthors, peers in the same department, peers within the

same institution, etc. For this study, I solely focus on a star’s influence on the performance of his

coauthors.12 The most straightforward empirical approach would be to examine the change in a
12In a working paper, Waldinger (2008) explores changes in the productivity of scientists (peer effects) from the

exogenous dismissal of colleagues in Nazi Germany. He explores peer effects at three levels: the department level,
the same specialization within the same department, and the coauthor level. He only finds evidence of peer effects
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coauthor’s performance after the formation of the coauthoring relationship (i.e., after the first time

the two scientists collectively author a paper). Unfortunately, both the decision to coauthor at all

and the decision of whom to coauthor with are clearly not random decisions. This endogeneity

would bias my regression coefficients as the choice of coauthors may very well be related to their

future productivity, resulting in a spurious relationship between a coauthor’s productivity and his

coauthorship network. As such, the empirical challenge becomes finding an exogenous change in

the coauthoring relationship. An alternative to examining the formation of coauthoring ties is to

examine the cessation of coauthoring ties but one that is exogenous. For this paper, I examine the

change in productivity of a coauthor when an immunologist dies.

The empirical model to be estimated is

Y−ijt = exp[β1Deathit + β2Deathit ×AllStari + β3Deathit × LoneWolfi+

β4Deathit ×Maveni + γit + µjt + δt + φij + εijt] (1)

Since my objective is to capture the change in performance of a coauthor after an immunologist’s

death, the dependent variable, Y−i,j,t, measures the number of Impact Factor weighted publications

coauthor j wrote in year t where star i is not a coauthor. I use quality adjusted publication counts

instead of raw publication counts to ensure that I am observing changes in the quality of publishing

rather than changes in the frequency of publishing. Deathijt is an indicator variable that switches

to 1 the year immunologist i dies. β1 captures the net change in productivity of coauthor j after star

i dies, irrespective of his star type. β2, β3, and β4 captures the change in productivity of coauthor j

if immunologist i is an All-Star, Lone Wolf, or Maven, respectively. I omit the Non-Star category,

and so the coefficients of β2, β3, and β4 should be interpreted as the change in productivity relative

to the productivity change when a Non-Star dies. Because the star types of i are time invariant,

they can only be identified through the interaction with Death. γit, and µjt are sets of age cohort

dummies that capture the changes in research productivity across the academic lifecycle (Levin

at the coauthor level.
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and Stephan 1991).13 I capture time effects with δt. φij is a series of dyad fixed effects, which in

practice are conditioned out during estimation and as such are not directly estimated. εijt is an

identically distributed error term but not independent. Errors are correlated due to star i’s death

affecting all of his coauthors at the same time. Clustering of the standard errors by the star will

correct for this non-independence during estimation. If the coefficients on β1 through β4 are less

than zero, then the death of star i has a negative influence on the performance of coauthor j, which

provides some evidence that star i is indeed influencing the performance of coauthor j.

The identification of Deathijt comes from the variation in the deaths of immunologist i. By

employing dyad fixed effects, I capture all time invariant attributes common to the dyad by these

fixed effects, forcing the parameters to be solely identified from within dyad variation. Because of

the count nature of the dependent variable and the high percentage of zero values (33%) across the

sample, a count model is most appropriate. Specifically, I employ the Fixed Effects Poisson (FEP)

estimator developed by Hausman, Hall, and Griliches (1984). Apart from being computation-

ally straightforward, the Fixed Effects Poisson estimator estimated via quasi maximum likelihood

(QML) has strong robustness features, even allowing for consistent parameter estimates of non-

count dependent variables (Wooldridge 2002). In addition, standard errors can be made robust to

deviations from the poisson distribution, in particular the equality requirement of the first and sec-

ond moments (Wooldridge 1999). I report these robust standard errors for all QML specifications.

In addition to the QML Fixed Effects Poisson specification used, I implement a linear model of

the following form for robustness checks:

log Ỹ−ijt = dijt + β1Deathijt + β2Deathijt ×AllStari + β3Deathijt × LoneWolfi+

β4Deathijt ×Maveni + γit + µjt + δt + φij + εijt (2)

where the new dependent variable Ỹ−ijt = Y−ijt if Y−ijt ≥ 1, and Ỹ−ijt = 1 if Y−ijt = 0. To

distinguish between the values of Ỹ−ijt where Y−ijt = 1 and where Y−ijt = 0, I create a variable

13In practice, I generate these age cohort dummies in four-year intervals, whereby the first dummy will capture a
scientist in his first four years, the second dummy will capture a scientist in his fifth through eighth year, etc.
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dijt where dijt = 1 if Y−ijt = 0 and add it as an independent variable. This technique allows

for straightforward interpretation of the coefficients as well as allowing the variables of interest to

be interacted with continuous variables (Pakes and Griliches 1980, Acemoglu and Linn 2004).14

In addition, by adopting a linearization of the functional form of the regression, I can carry out

instrumental variable analysis through two-stage least squares estimation (2SLS), which is much

more cumbersome in non-linear models such as the poisson outlined in Equation 1.

I present both specifications (Equations 1 and 2) across two main samples. The first sample

only includes dyads in which a star dies. Twenty-eight of the 415 immunologists die, and they

each have an average of 29.1 coauthors, resulting in a sample consisting of 816 dyads. The second

sample includes all immunologist-coauthor dyads, regardless of whether the immunologist dies or

not. The full set of 415 immunologists has, on average, 58.3 coauthors, resulting in a sample of

24,175 dyads. Across both specifications, the regression analysis follows a differences-in-differences

style estimation. For the sample consisting solely of dyads where the immunologist dies, I use

variation in the death of immunologist i to estimate the relationship between death and the change

in performance of coauthor j. For the sample consisting of all dyads, I introduce a second dimension

of variation, comparing the possible disparity between scientists whose coauthors die and those

whose do not. Since only 7% of the 415 immunologists in the sample die (the “treated” group),

the remaining 93% in the full sample serve as a de facto control group.15

6 Results

6.1 Main Results

This study asks two main research questions. First, using the old dichotomous definition of star

scientists, do productivity stars have a larger impact on the performance of their coauthors than

Non-Stars? Second, using my new taxonomy of star scientists, to what extent do different star types

influence the performance of others? The first question was already asked and partially answered in
14The magnitude of interaction effects in nonlinear models do not equal their marginal effects and thus makes

direct interpretation of results difficult (Ai and Norton 2003).
15In addition, the control group allows me to estimate the cohort effects more precisely.
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the very important work by Azoulay, Graff Zivin, and Wang (2008) (AGW). As mentioned earlier,

however, the empirical results that AGW present, whereby a scientist’s performance decreases after

the death of a coauthor, are unable to rule out two possibly conflating effects. First, because AGW

condition their sample on the top 5% of life scientists and solely examine the influence of their deaths

on the performance of their coauthors, they are unable to examine the impact of non-stars on the

performance of their coauthors, as non-stars are omitted from their sample. They do show evidence

that as a scientist’s citations increase so does his impact on the performance of his coauthors, but

this still is conditioned on being in the top 5%. Second and similarly, without the inclusion of

different star types in their sample, they are unable to disentangle the decrease in performance of

coauthors due to the loss of an intellectual link rather than the decrease in performance due to the

disruption caused by the death of a former colleague.

Before I explore the extent to which different star types influence the performance of others,

I feel it prudent to address the question of the extent to which stars have a larger impact on

the performance of their coauthors than non-stars, first by replicating AGW’s results and then

by including controls for non-stars to appropriately deal with the alternate explanations outlined

above.

Table 6 presents the main results of Equation 1 from section 5. To allow for readily comparable

coefficients to those presented by AGW, the sample used in Table 6 only includes dyads where the

immunologist dies. Specification 1 further restricts the sample by only including immunologists

who have high productivity, that is, All-Stars and Lone Wolves. This definition and sample are

identical to those used in AGW. The coefficient on death is -0.173, which translates into a 15.9%16

decrease in performance, somewhat larger than AGW’s range of estimates between -5 and -10%.

Specification 2 returns the sample to all dyads with a death. The death variable is interacted

both with immunologists who have high (All-Stars and Lone Wolves) and average (Mavens and

Non-Stars) productivity. The coefficient on the high productivity interaction, significant at the 5%

level, indicates that the performance of coauthors of high productivity stars decreases by 17.4%

(-0.191), again somewhat larger than the findings of AGW. The coefficient on average productivity
16exp(−0.173)− 1 = −0.159
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immunologists is not statistically distinct from 0, indicating that average productivity immunology

stars in the aggregate have little influence on the performance of their coauthors. Specification 3

is identical to Specification 2, but instead of interpreting the coefficients on the influence of high

productivity on coauthor performance relative to when the immunologist was alive, the omitted

category in Specification 3 is the death of an average productivity immunologist. Interestingly, the

null hypothesis that the performance effects of the death of a high productivity star is different

from the death of an average productivity star cannot be rejected. Specification 4 looks at the

average effect of death on a coauthor’s performance for all star types. That is, the average effect of

the death of an immunologist in the sample decreases the performance of their coauthors by 4.4%.

This value, however, is highly insignificant.

Specification 5 introduces the second dimension of the star taxonomy: helpfulness. The omitted

category for Specification 5 is the death of a Non-Star, and so all coefficients should be interpreted

as relative to the performance effects of the death of a Non-Star. Most strikingly, the death of an

All-Star decreases the performance of his coauthors by 38.6% (-0.488), the death of a Lone Wolf

decreases the performance of his coauthors by 23.6% (-0.269), and the death of a Maven decreases

the performance of his coauthors by 38.7% (-0.489). All coefficients are significantly different from

0 at the 10% level, while the Maven coefficient is significant at the 1% level.

Table 7 continues to present the main results of Equation 1 but differs from the results presented

in Table 6 in that I estimate the full sample (dyads where the focal immunologist dies and dyads

where the focal immunologist does not die). The models run in Table 7 are identical to those run

in Table 6 apart from the different sample. As in the previous table, the sample in Specification

1 only includes high productivity immunologists (All-Stars and Lone Wolves). The average effect

of the death of a high productivity star is not only quantitatively smaller than in the sample with

only dyads where a death occurs but also statistically insignificant. Specification 2 returns to the

full sample and examines the effect of death on coauthor performance by whether or not the immu-

nologist has high or average productivity. The death of a high productivity star results in a 31.7%

(-0.381) decrease of his coauthor’s performance and is highly significant. Interestingly, the death

of an average productivity immunologist also has a negative impact on his coauthor’s performance,
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decreasing the subsequent quality adjusted output by 17.1% (-0.188). This indicates that when

thinking about stars on a productivity continuum, the death of a coauthor, irrespective of his pro-

ductivity, negatively influences the performance of his coauthors, albeit with different magnitudes.

Specification 3 changes the omitted variable to the death of an average productivity immunolo-

gist, allowing for the direct test of the null hypothesis that high productivity immunologists have

an equal impact on the performance of their coauthors than average productivity immunologists.

While the coefficient indicates that the performance of coauthors of high productivity immunolo-

gists who die is 17.6% lower than average productivity immunologists who die, this value is not

statistically distinct from 0. Specification 4 makes no distinction between immunologist star types

and shows that the average decrease in performance of coauthors of immunologists who have died

is 23.2% (-0.264).

Specification 5 introduces the new taxonomy star types. In this specification, death has an

average 11% negative effect on the performance of coauthors but is statistically insignificant. The

change in a coauthor’s performance after a death varies by the type of star that dies. Coauthors

of All-Stars produce 40.0% (-0.510) less quality-adjusted output, and coauthors of Mavens produce

39.0% (-0.494) less quality-adjusted output. The coauthors of Lone Wolves produce 21.4% (-

0.241) less quality-adjusted output, but this value is not statistically distinct from 0. All of these

coefficients are relative to the decrease in performance of coauthors of a Non-Star who dies. The

variables that appear in Specification 5 are the main variables of interest for this study, and their

relationships will be shown in various functional forms throughout this paper. The Lone Wolf and

Maven coefficients are statistically distinct from one another at the 5% level.

To compare these results with those of AGW, recall that their range in performance decreases

due to a coauthor’s death is between -5 and -10%. As can be seen from Tables 6 and 7, the estimates

I present are at times outside of this bound. One of the reasons for this difference may lie in the

change of setting. Where AGW look at a range of life science disciplines, this study only examines

immunologists. Second, AGW construct a control group using a form of propensity score matching

to find two “nearest neighbor” control stars for every star who dies. My study, instead, uses all

immunologists who do not die in my sample of 415 immunologists to form a control group. If either
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the immunologists used in the control group or their coauthors have lower performance (for a myriad

of factors) than the immunologists who die or their coauthors, then my estimates will appear larger

in magnitude. As can be seen from Table 5, the coauthors of immunologists who die do have higher

average publication, citation, and Impact Factor-weighted publication counts than the coauthors

of immunologists who do not die. This, however, does not directly imply that there should be any

difference in performance impact from coauthor death across these two groups. Regardless, the

range of parameter estimates do appear similar enough to assuage a reader’s concern that AGW

and this study are examining different phenomenon.

Overall, the significance of the star types from the new taxonomy appear both significant and

stable. It does appear that Mavens are different from Lone Wolves. Furthermore, high productivity

immunologists – All-Stars and Lone Wolves – each have different effects on the performance of their

coauthors when they die. The next section examines the robustness of these relationships.

6.2 Robustness Checks

Table 9 presents OLS estimates of Equation 2 from Section 5. Specifications 1 and 2 replicate

the results from Specification 5 from Tables 6 and 7, where a coauthor’s change in performance is

a function of the type of star who died. The coefficients from this linear model are qualitatively

similar to those presented in the poisson fixed effects models estimated by quasi maximum likelihood

(QML), and as such, I feel confident using the OLS model to estimate the relationship despite the

count nature of the dependent variable. Specification 2, which makes use of the entire sample,

shows that the death of an All-Star decreases the performance of his coauthors by 24% (-0.274),

while the death of a Maven decreases the performance of his coauthors by 21.6% (-0.243). Both

of these estimates are significant at the 1% level. Again, as in previous specifications, the effect of

the death of a Lone Wolf is statistically indistinguishable from the effect the death of a Non-Star

has on his coauthors.

Of the 415 immunologists in the sample, 28 die. While my identification of the impact of their

deaths comes from the variation in performance of their coauthors, concerns of outliers driving the

results may still exist. In Specifications 3 and 4, instead of looking at the death of the sample
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of immunologists, I examine their “exit” decisions. An exit is defined as the year in which an

immunologist stops publishing for at least a four-year period. According to academic immunologists,

if an immunologist has failed to publish a single manuscript in four years, then it is fairly reasonable

to assume that this person has exited the risk set of publishing. An exit can occur for a number of

reasons: retirement, decrease in productivity, move to industry, and of course death. Using the full

sample in Specification 4, the results differ somewhat from the other tables. The exit of an All-Star

is both economically and statistically insignificant, and the decrease in performance of coauthors of

Lone Wolves and Mavens are not statistically distinct from one another. Three major explanations

for these results exist. First, All-Stars may announce their exits well in advance, so that coauthors

have ample time to adjust to the anticipated loss of the All-Star. Second, if an All-Star exits, he

may still be active in an advising capacity, thus mitigating any losses that may have befallen his

coauthors. Third, coauthors of exited All-Stars aren’t very productive before or after the exit, and

thus no decline is observed. These alternate reasons are unknown to the econometrician, and so I

must search for some form of exogenous variation.

To remedy the endogeneity of the exit decision, Specifications 5 and 6 report results from an

instrumental variable (IV) two stage least squares (2SLS) estimation where the death measure acts

as an instrument for the exit decision. While results presented indicate a relationship between the

death of an immunologist and the productivity of his coauthors, the relationship is driven entirely

through the exit of the immunologist from the coauthor’s coauthorship network. As such, the death

of an immunologist should not affect his coauthor’s productivity in any way other than through his

exit, making death an appropriate candidate for an instrument of exit. I present linear probability

models of the first stage estimates whereby the likelihood of an exit is a function of death in Table 8.

As can be seen from the first stage estimates in Table 8, the death of an immunologist has a highly

significant impact on the likelihood of the immunologist exiting the sample, almost by definition.

Having an appropriate instrument, however, increases the level of variation and attenuates the

likelihood that outliers are driving the results. The IV estimates presented in Specification 6 from

Table 9 reveal that the exit of an All-Star decreases the performance of his coauthors by 42.1%

(-0.546), while the exit of a Maven decreases the performance of his coauthors by 35.9% (-0.445).
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Both of these coefficients are statistically significant at the 5% level, while the effect of a Lone

Wolf’s exit on his coauthor’s performance is statistically insignificant.

Table 10 replicates Table 9 but changes the dependent variable from the count of Impact Factor-

weighted publications to the count of citation weighted publications. As in Table 9, I provide

OLS estimates for both the effect of a death and exit on a coauthor’s performance in addition

to instrumenting exit with death. With the change of the dependent variable, the results are

somewhat different. The death of a Maven has a larger effect on the decrease in performance of his

coauthors than the death of an All-Star, although these coefficients are not statistically different

from one another. More interesting, however, is that for the first time the exit of a Lone Wolf has

a larger negative effect on the performance of his coauthors than the exit of an All-Star, even after

instrumenting for exit with death. The effect of a Maven’s exit still has the largest negative effect

on his coauthors, but the coefficient is not statistically distinct from the Lone Wolf coefficient.

While all three major star types – All-Stars, Lone Wolves, and Mavens – negatively affect the

performance of their coauthors with respect to citation-weighted publications, no one star type has

a larger effect that is statistically significant. One of the main reasons for this finding may be the

idiosyncratic way in which citations are awarded and the effect an individual has on generating

citations. While a lone individual can greatly influence the quality of a manuscript and thus the

quality of the journal it is accepted by, the process by which an article collects citations is less

understood.

Table 11 presents results from estimating my main regression specification of interest by means

of a fixed effects negative binomial. While the fixed effects poisson estimator with robust standard

errors is much preferred over the negative binomial estimator (as the poisson estimator presents

more conservative [larger] standard errors), the negative binomial estimator is still quite heavily

used in strategy, sociology, and economics in the application of count models and as such is included

to ensure that the results still appear reasonable. Specification 2 shows results from the full sample

and finds results consistent with other estimators, whereby the death of an All-Star or Maven

decreases the performance of his coauthors in excess of 20%.

Table 12 moves away from the discrete definition of productivity and helpfulness and instead
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looks at the continuous relationship between the effect of an exit or death interacted with con-

tinuous measures of productivity and helpfulness. I convert the measures of productivity and

helpfulness to logs so that the coefficients may be interpreted as elasticities, which allows for a

unit-free interpretation of the parameters. Specification 1 shows the effect of an immunologist’s

exit on the performance of his coauthors. A doubling in the productivity of the immunologist,

where productivity is measured by citations received, results in a 5.2% decrease in the performance

of his coauthors. Helpfulness has no statistical effect on the performance of coauthors when an

immunologist exits. Specification 2 looks at deaths instead of exits. A doubling in the helpfulness

of an immunologist who dies reduces the performance of his coauthor by 13.4%, a much higher level

than in the case of exits, again raising the need for an IV estimation to address the endogeneity of

exits. Specification 3 instruments exits with death and finds that a doubling of the helpfulness of an

immunologist is associated with an 18.7% decrease in performance of his coauthors, while changes

in productivity have no effect on the coauthor’s performance. I change the dependent variable to

citation-weighted publication counts in Specifications 4 through 6. Immunologist productivity has

a statistically significant effect on the performance of coauthors when an immunologist exits, yet

looking at deaths and exits instrumented by death, the effect of helpfulness strengthens but retains

only marginal statistical significance.

7 Alternate Explanations

At least three alternate explanations may account for the relationship observed between the death

of various star types and the subsequent decrease in performance of their coauthors. First, the

decrease in a coauthor’s performance may come from a decrease in funding that had been provided

by the now deceased immunologist. Second, the status of the immunologist is artificially increasing

the perceived performance of his coauthors and thus, after his death, the coauthors return to their

natural steady-state. This casts doubt on the claim that the decrease in performance of a coauthor

when an immunologist dies is due to the elimination of performance enhancing benefits such as

providing helpful critique. Third, the effects observed are due to the influence of institution- and

university-specific factors that influence the performance of coauthors.
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The first alternate explanation of the reported results comes from the concern that an immu-

nologist’s funding largely drives coauthor performance. The concern is that because funding is

almost always linked to a primary investigator, funding would stop with an immunologist’s death,

and so the relationship we witness whereby a coauthor’s performance decreases with the death of

an immunologist is simply being driven by the omitted funding variable. For this to be a viable

alternate explanation, however, I must assume that a coauthor is able to benefit or make use of the

immunologist’s funding yet not include the immunologist as a coauthor. The probability of such

an occurrence is very low as any use of funds will surely be tied to a coauthoring arrangement.

Furthermore, recall that the dependent variable used throughout is the quality adjusted count of

papers written by the coauthor without the focal immunologist. If the coauthor is benefiting from

the immunologist’s funding and consequently frequently coauthoring with the immunologist, then

the coauthor’s pre-death publications with the immunologist will not be counted. The empirical

exercise of this paper is to compare pre- and post-death publishing rates of coauthors. If the pre-

death rates are lower due to frequent coauthorship with the focal immunologist (and thus netted

out), then the observed change in productivity after the immunologist dies should be negligible,

thus biasing my results in an opposite direction from what is observed.

The second alternate explanation for the reported results is the conflation of performance with

status. The concern is that a coauthor experiences positive performance due to an association with

a high status immunologist (Merton 1973). For this to be true, status cannot act as an information

signal, wherein due to information asymmetry association with an immunologist conveys quality

onto the coauthor, consequently increasing his performance. If in this context status acts as a

quality signal, then the signal should not be weakened once the immunologist dies, and conse-

quently a decrease in a coauthor’s performance after the death of an immunologist is unlikely to be

associated with status effects. Furthermore, if status is driving the results reported, then I would

not necessarily predict the strong effect of the death of a Maven. Moreover, if status is driving

my results, then one would expect the effect of a Lone Wolf’s death to have even larger negative

effects on their coauthor’s productivity, as All-Stars and Lone Wolves are considered high status

individuals.
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Third, heterogeneity in resources available to institutions or universities may increase the per-

formance of immunologists. While this is certainly true, the only way for institutional effects to

influence the performance of coauthors is if at the time of an immunologist’s death the coauthor

changes institutions. I employ dyad fixed effects across all specifications, and so any time-invariant

characteristics that do not alter over the course of the panel, such as institutional setting, will be

captured by the fixed effects. Lastly, it is very unlikely that a coauthor changes institutions in

response to a former colleague’s death, and thus institutional effects should have no influence on

the results observed.

8 Discussion and Conslusion

This paper develops a new taxonomy of star scientists for the purpose of identifying scientists most

likely to impact the performance of others. I expand the current conceptualization of star scientists,

which presently only examines an individual’s productivity, by adding a social behavior dimension:

helpfulness. Helpfulness is the extent to which an individual is beneficial to others. By dividing

immunologists into four classifications along the dimensions of productivity and helpfulness, I ex-

amine the magnitude of the decrease in performance of coauthors of immunologists who have died.

I define All-Stars as scientists with both high productivity and helpfulness, where high is defined

as being in the top 5% of the distribution. Lone Wolves are scientists with high productivity but

average helpfulness. Mavens are scientists with average productivity but high helpfulness. Non-

Stars make up the fourth classification and are average in productivity and helpfulness. Mavens

and All-Stars have the largest negative impact on the publishing rates of their coauthors when they

die, indicating the loss of a source of performance. The death of an All-Star on average decreases

the performance of his coauthors by 35%, while the death of a Maven decreases the performance

of his coauthors by 30%. These findings are robust to a series of controls and specifications.

These findings have several important implications for both theory and practice. First, the

resource-picking mechanism in the resource-based view of the firm requires somewhat imperfect in-

formation to outsmart the resource market. This is difficult to do with public and highly verifiable

resources such as a high productivity star. High helpfulness stars, on the other hand, are more diffi-
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cult to measure, resulting in possible information asymmetries and a possible source of sustainable

competitive advantage. Second, the learning by hiring literature (Song, Almeida, and Wu 2003)

has mostly focused on the acquisition of knowledge through the hiring of individuals. Yet, as has

been argued throughout this paper, if factor markets are efficient, then a recruited engineer, for

example, should be able to capture his full output, which includes his embodied knowledge, through

his salary. A logical extension to this literature is to think about the extent to which different star

types affect a firm’s ability to learn through the hiring process. Third, alongside AGW, this paper

is one of the first studies to both measure and find conclusive support of the impact of star scientists

on the performance of others. I find large economic and statistically significant results by forming

a new taxonomy that focuses on scientists most likely to impact the performance of others.

Strategic hiring decisions are no longer the sole domain of human resources but rather require

top corporate-level decision making as human capital has a large impact on firm performance. For

many knowledge-based companies, the largest expense is the cost of human capital in the form of

salaries. Developing an effective organizational design to properly manage the main inputs of a

firm’s innovation production function is of great importance.

From a public policy standpoint, a more nuanced understanding of human capital will surely

inform the debate on regional clusters. One of the main benefits of clusters is both the generation

of and the ability to absorb non-rival knowledge spillovers. Policy makers go to great lengths in

developing appropriate incentives to optimize cluster structure with the goal of maximizing welfare.

Understanding what types of human capital are most likely to impact the performance of others is

of critical concern.

While the development of this new taxonomy provides a tool with which to examine human

capital along a second dimension, its construction raises additional questions. How are Mavens

priced relative to Lone Wolves? Does the market appropriately price the observed positive perfor-

mance effects of different star types? The mechanism presented in this study is that of a strong

tie formation. How then do All-Stars and Mavens diffuse knowledge and spillovers across weak ties

(Granovetter 1973)? These questions are left to future research.

A number of limitations with this study still exist. First is the endogenous nature of acknowl-
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edgements. No clear or externally enforced rule exists over the administration of acknowledgements.

Consequently, acknowledgements may be strategically applied for personal gains, such as winning

favor with a journal referee or editor. However, if acknowledgements are bestowed upon individuals

who are not helpful but instead in a position of authority, then we would expect additional noise to

enter the helpfulness measure and consequently bias results towards 0 and in the opposite direction

from the results presented here.

Second, the main conduit in this study by which stars impact the performance of others comes

from the establishment of a social tie through the formation of a coauthoring relationship. Clearly,

this is not the only forum by which stars impact the performance of others nor do I purport this to

be so. This conduit should be viewed within the context of a larger research agenda that explores

the ways in which different star types impact the performance of others.

Lastly, the external validity of this setting may be limited. While the objective functions of firms

and academic departments are not entirely orthogonal, they are certainly different. While a firm

setting would be ideal, the difficulty in obtaining both individual level productivity and helpfulness

measures is greatly encumbering. Nonetheless three factors contribute to the attractiveness of

studying immunologists. First, because acknowledgement patterns vary across disciplines, it is

important to isolate this heterogeneity by focusing on a single distinct discipline. Second, because

of this heterogeneity in acknowledgement norms found across academia, it is important to look at a

discipline where acknowledgements are both present and applicable to my measure of helpfulness.

And third, measures on helpfulness are incredibly hard to identify, let alone access for a cross section

of firms, and as such are not the appropriate focus of a study such as this. A survey instrument,

however, may be able to capture individual levels of helpfulness in a firm setting. This avenue is

left open for future research.

This study presents preliminary evidence of the performance gains associated with coauthoring

with helpful scientists. In doing so, it makes three important contributions. First, it extends the

current dichotomous conceptualization of star scientists by explicitly defining star classification not

only along the dimension of productivity but also the spectrum of helpfulness, thus developing a new

taxonomy of star scientists. Second, it provides a measure by which helpfulness can be empirically
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tested: acknowledgements. Third, it attempts to establish a causal link between coauthoring with

All-Stars and Mavens and an increase in performance.

The traditional method of bundling together All-Stars and Lone Wolves is quite problematic.

All-Stars and Lone Wolves are quite different in their impact on the performance of others. Further-

more, Mavens, who under the current dichotomous conceptualization of star scientists are classified

as Non-Stars, are actually quite important in affecting the performance of others. As such, our

current classification of star scientists has possibly been systematically overvaluing Lone Wolves

while undervaluing Mavens.
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Figure 1: Productivity and Helpfulness Distribution: N=4150
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Table 1: A New Taxonomy for Star Scientists
Average High

Productivity Productivity

High
Maven All-Star

Helpfulness

Average
Non-Star Lone Wolf

Helpfulness
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Table 2: Star Scientist Classifications - Top 5%
Average Productivity High Productivity

High

Maven All-Star

Helpfulness

Total N = 5 Dyads = 189 N = 4 Dyads = 188
Average coauthors = 37.8 Average coauthors = 47

Died N = 3 Died Dyads = 68 Died = 2 Died Dyads = 22
Average coauthors = 22.66 Average coauthors = 11

Average

Non-Star Lone Wolf

Helpfulness

Total N = 390 Dyads = 23,125 N = 16 Dyads = 673
Average coauthors = 59.29 Average coauthors = 42.06

Died N = 18 Died Dyads = 490 Died = 5 Died Dyads = 236
Average coauthors = 27.22 Average coauthors = 47.2
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Table 5: Coauthor Means (Std. Dev.) by Dyad Type
Impact Citation
Factor Weighted

Papers Citations Papers Papers

Full Sample

All-Star 2.43 94.65 11.37 28.67
N = 4,659 (4.07) (206.4) (20.27) (65.1)

Lone Wolf 2.39 96.04 11.31 30.27
N = 18,908 (4.09) (209.7) (18.92) (65.53)

Maven 2.61 105.70 11.18 30.43
N = 5,285 (3.48) (209.07) (15.54) (63.8)

Non-Star 2.33 71.19 9.65 21.83
N = 546,631 (4.2) (172.93) (18.42) (55.55)

Died = 1

All-Star 3.16 139.47 15.86 35.80
N = 792 (4.13) (281.01) (23.48) (107.65)

Lone Wolf 2.83 103.65 12.24 28.82
N = 7,879 (3.94) (215.39) (18.61) (62.2)

Maven 3.44 124.25 12.91 27.62
N = 2,551 (4.28) (235.42) (17.31) (48.59)

Non-Star 2.44 74.58 9.80 22.18
N = 14,746 (3.48) (163.75) (16.19) (48.92)

Died = 0

All-Star 2.28 85.47 10.46 27.21
N = 3,867 (4.05) (186.21) (19.42) (52.18)

Lone Wolf 2.08 90.60 10.65 31.32
N = 11,029 (4.17) (205.38) (19.11) (67.79)

Maven 1.84 88.38 9.57 33.05
N = 2,734 (2.25) (179.38) (13.49) (75.18)

Non-Star 2.33 71.09 9.65 21.82
N = 531,885 (4.22) (173.17) (18.48) (55.72)
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Table 6: Poisson QML Baseline Model - Dyads with a Death
Dependent Variable: Coauthor Impact Factor Weighted Publication Counts

(1) (2) (3) (4) (5)

Death −0.173+ 0.036 −0.044 0.098
(0.092) (0.098) (0.076) (0.107)

Death X −0.191∗ −0.227
High Productivity (0.094) (0.139)

Death X 0.036
Average Productivity (0.098)

All-Star Death −0.488+

(0.257)

Lone Wolf Death −0.269+

(0.143)

Maven Death −0.489∗∗

(0.130)

Dyad Fixed Effects X X X X X
Year Fixed Effects X X X X X
Star Age Cohort FE X X X X X
Coauthor Age Cohort FE X X X X X

Observations 8671 25968 25968 25968 25968
Number of Dyads 258 816 816 816 816
Log Likelihood -55362 -151631 -151631 -151830 -151225

QML robust star cluster adjusted standard errors in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 7: Poisson QML Baseline Model - Full Sample
Dependent Variable: Coauthor Impact Factor Weighted Publication Counts

(1) (2) (3) (4) (5)

Death −0.076 −0.188+ −0.264∗∗ −0.115
(0.112) (0.110) (0.084) (0.117)

Death X −0.381∗∗ −0.194
High Productivity (0.125) (0.160)

Death X −0.188+

Average Productivity (0.110)

All-Star Death −0.510+

(0.271)

Lone Wolf Death −0.241
(0.165)

Maven Death −0.494∗∗

(0.119)

Dyad Fixed Effects X X X X X
Year Fixed Effects X X X X X
Star Age Cohort FE X X X X X
Coauthor Age Cohort FE X X X X X

Observations 23567 575483 575483 575483 575483
Number of Dyads 861 24175 24175 24175 24175
Log Likelihood -147400 -3055558 -3055558 -3055758 -3055102

QML robust star cluster adjusted standard errors in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 8: OLS - Linear Probability Model - First Stage Estimates of Exit
Dependent Variable: Exit All-Star Exit Lone Wolf Exit Maven Exit Non-Star Exit

(1) (2) (3) (4) (5)

Death 0.429∗∗

(0.082)

All-Star Death 0.557∗∗

(0.100)

Lone Wolf Death 0.488∗∗

(0.161)

Maven Death 0.613∗∗

(0.039)

Non-Star Death 0.530∗∗

(0.075)

Constant 0.388∗∗ −0.007 0.023 0.002 0.361∗∗

(0.077) (0.006) (0.018) (0.005) (0.075)

Dyad Fixed Effects X X X X X
Year Fixed Effects X X X X X
Star Age Cohort FE X X X X X
Coauthor Age Cohort FE X X X X X

Observations 575483 575483 575483 575483 575483
Number of Dyads 24175 24175 24175 24175 24175
Log Likelihood 180066 1245618 822523 1114320 217141
R2 0.39 0.07 0.15 0.13 0.39

Star cluster adjusted standard errors in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 9: OLS and 2SLS Model with Deaths and Exits I
Dependent Variable: Log of Coauthor Impact Factor Weighted Publication Counts

Dyads Included Death All Death All Death All
Estimation OLS OLS OLS OLS IV IV

(1) (2) (3) (4) (5) (6)

Death −0.035 −0.091
(0.045) (0.061)

All-Star Death −0.223∗ −0.274∗∗

(0.103) (0.097)

Lone Wolf Death −0.082 −0.090
(0.067) (0.069)

Maven Death −0.192∗ −0.243∗∗

(0.088) (0.077)

Exit −0.006 −0.148∗∗ −0.240+ −0.194+

(0.066) (0.024) (0.124) (0.108)

All-Star Exit 0.007 −0.005 −0.341 −0.546∗

(0.077) (0.089) (0.285) (0.260)

Lone Wolf Exit −0.132 −0.140∗∗ −0.174 −0.256
(0.087) (0.043) (0.130) (0.158)

Maven Exit −0.171 −0.189+ −0.434∗∗ −0.445∗∗

(0.115) (0.103) (0.145) (0.083)

Constant 1.078 0.744∗∗ 1.003 0.804∗∗

(0.660) (0.144) (0.664) (0.144)

Dyad Fixed Effects X X X X X X
Year Fixed Effects X X X X X X
Star Age Cohort FE X X X X X X
Coauthor Age Cohort FE X X X X X X

Observations 25968 575483 25968 575483 25968 575483
Number of Dyads 816 24175 816 24175 816 24175
Log Likelihood -29755 -636510 -29753 -636045 -29928 -636336
Adjusted R2 0.52 0.53 0.52 0.53 0.50 0.51

Star cluster adjusted standard errors in parentheses.
For Specifications 5 and 6, death instruments for Exit.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 10: OLS Model with Deaths and Exits II
Dependent Variable: Log of Coauthor Citation Weighted Publication Counts

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS IV IV

Death 0.018 −0.002
(0.042) (0.032)

All-Star Death −0.092 −0.096∗

(0.109) (0.045)

Lone Wolf Death −0.103+ −0.091
(0.060) (0.068)

Maven Death −0.186 −0.179+

(0.111) (0.093)

Exit −0.058 −0.159∗∗ −0.065 −0.011
(0.059) (0.023) (0.132) (0.062)

All-Star Exit −0.039 −0.019 −0.107 −0.176∗∗

(0.081) (0.054) (0.168) (0.050)

Lone Wolf Exit −0.228∗∗ −0.083∗ −0.177∗ −0.186∗∗

(0.069) (0.036) (0.076) (0.071)

Maven Exit −0.097+ −0.086∗ −0.350+ −0.292∗

(0.049) (0.037) (0.207) (0.133)

Constant 0.246 0.434∗ 0.255 0.504∗∗

(0.616) (0.177) (0.657) (0.176)

Dyad Fixed Effects X X X X X X
Year Fixed Effects X X X X X X
Star Age Cohort FE X X X X X X
Coauthor Age Cohort FE X X X X X X

Observations 25968 575483 25968 575483 25968 575483
Number of Dyads 816 24175 816 24175 816 24175
Log Likelihood -32805 -718489 -32776 -718109 -32799 -718363
Adjusted R2 0.66 0.67 0.66 0.67 0.65 0.65

Star cluster adjusted standard errors in parentheses.
For Specifications 5 and 6, death instruments for Exit.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 11: Robustness: Negative Binomial Fixed Effects
Dependent Variable: Coauthor Impact Factor Weighted Publication Counts

(1) (2)

Death 0.023 −0.052∗∗

(0.024) (0.019)

All-Star Death −0.237∗ −0.260∗∗

(0.095) (0.091)

Lone Wolf Death −0.090∗ −0.070∗

(0.036) (0.031)

Maven Death −0.144∗ −0.224∗∗

(0.058) (0.057)

Constant −1.712∗∗ −1.854∗∗

(0.333) (0.075)

Dyad Fixed Effects X X
Year Fixed Effects X X
Star Age Cohort FE X X
Coauthor Age Cohort FE X X

Observations 25968 575483
Number of Dyads 816 24175
Log Likelihood -73415 -1477864
Standard errors in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 12: Robustness: Continuous Measures of Productivity and Helpfulness
Dependent Variable: Log of Coauthor Impact Factor Log of Coauthor Citation

Weighted Publication Counts Weighted Publication Counts

(1) (2) (3) (4) (5) (6)
OLS OLS IV OLS OLS IV

Exit 0.144∗ −0.143 0.221∗∗ 0.363
(0.062) (0.263) (0.077) (0.230)

Exit X −0.058 −0.187∗ 0.017 −0.097
Helpfulness (0.045) (0.094) (0.030) (0.067)

Exit X −0.052∗∗ −0.017 −0.069∗∗ −0.062∗

Productivity (0.011) (0.047) (0.012) (0.030)

Death −0.074 0.198+

(0.141) (0.111)

Death X −0.134∗∗ −0.075+

Helpfulness (0.046) (0.045)

Death X −0.004 −0.033+

Productivity (0.020) (0.017)

Constant 0.806∗∗ 0.741∗∗ 0.511∗∗ 0.433∗

(0.146) (0.144) (0.176) (0.177)

Dyad Fixed Effects X X X X X X
Year Fixed Effects X X X X X X
Star Age Cohort FE X X X X X X
Coauthor Age Cohort FE X X X X X X

Observations 575483 575483 575483 575483 575483 575483
Number of Dyads 24175 24175 24175 24175 24175 24175
Log Likelihood -635901 -636513 -636222 -717926 -718487 -718294
Adjusted R2 0.53 0.53 0.51 0.67 0.67 0.65

Star cluster adjusted standard errors in parentheses.
For Specifications 5 and 6, death instruments for Exit.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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