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Abstract

While interest in social determinants of individual behavior has led to a rich
theoretical literature and many efforts to measure these influences, a ma-
ture “social econometrics” has yet to emerge. This chapter provides a critical
overview of the identification of social interactions. We consider linear and
discrete choice models as well as social networks structures. We also con-
sider experimental and quasi-experimental methods. In addition to describing
the state of the identification literature, we indicate areas where additional re-
search is especially needed and suggest some directions that appear to be
especially promising.
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Like other tyrannies, the tyranny of the majority was at first, and is
still vulgarly, held in dread, chiefly as operating through the acts
of the public authorities. But reflecting persons perceived that
when society is itself the tyrant-society, collectively over the sep-
arate individuals who compose it-its means of tyrannising are not
restricted to the acts which it may do by the hands of its politi-
cal functionary. Society can and does execute its own mandates:
and if it issues wrong mandates instead or right, or mandates at
all in things with which it ought not to meddle, it practices a so-
cial tyranny more formidable than many kinds of political oppres-
sion, since, though not usually upheld by such extreme penalties,
it leaves fewer means of escape, penetrating more deeply into the
details of life, and enslaving the soul itself. Protection, therefore,
against the tyranny of the magistrate is not enough: there needs
protection also against the tyranny of prevailing opinion and feel-
ing; against the tendency of society to impose, by means other
than civil penalties, its own ideas and rules of conduct on those
who dissent from them; to fetter the development and, if possible
prevent the formation, of any individuality not in harmony with its
ways, and compel all characters to themselves upon the model of
its own.

John Stuart Mill, On Liberty (1859)1

1 Introduction

This chapter explores identification problems that arise in the study of social
economics. We survey some of the existing empirical work, but do so in the
context of different identification strategies. Our concern is in understanding
general conditions under which the finding of evidence of social interactions is
possible and when it is not; we therefore do not focus on particular contexts. A
valuable complement to our chapter is Epple and Romano (forthcoming) who
provide an integration of theoretical, econometric and empirical work on the
specific question of peer effects in education.

1On Liberty and other Writings, S. Collini ed., Cambridge: Cambridge University Press,
p. 8.
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While there now exists a rich literature which develops theoretical mod-
els of social interactions, as well as an enormous number of empirical papers
that purport to find evidence for or against the presence of social interactions
in particular contexts, the conditions under which social interactions are iden-
tified have yet to be comprehensively evaluated.2 The main identification chal-
lenges facing an empiricist are now relatively well understood. These chal-
lenges come in three forms. One set of issues involves classical simultaneous
equations problems. This set amounts to asking whether, for an equilibrium set
of individual choices, one can differentiate between social interactions that de-
rive from direct interdependences between the choices and social interactions
that derive from predetermined social factors. A second set of issues involves
the possible presence of unobserved group-level characteristics. A third set of
issues addresses the identification challenges that arise from the endogeneity
of the groups that act as carriers of social interactions and the effects of self-
selection. The research frontier in the study of social interactions thus involves
efforts to achieve identification in the presence of these challenges. We will
discuss a range of results on when point or partial identification holds.

These challenges all involve the canonical identification question for
social interactions empirics: given an individual’s membership in some group,
can the analyst distinguish a role for the characteristics and behaviors of oth-
ers in the group in influencing that individual’s choices? We will thus generally
speak of individuals as members of groups and describe social interactions in
terms of those groups; the partial exception to this will occur when we con-
sider networks which will characterize social structures across a population as
a whole. In social interactions models, groups are typically defined in terms of
exogenous categories such as ethnicity, gender or religion or endogenous cat-
egories such as residential neighborhoods, friendship networks, schools and
firms. The former, of course, may not literally be exogenous, but rather the
determination of whether an individual is a member of the category is treated
as predetermined from the perspective of the behaviors under study. The
distinction between exogenous and endogenous categories is of particular im-
portance if one wants to use social interactions to understand a phenomenon
such as inequality; without a model of how category memberships are deter-
mined a social economics theory of inequality will be incomplete.

2The empirical work is surveyed in Brock and Durlauf (2001b), Ioannides and Loury
(2004), and Durlauf (2004). Theoretical models are surveyed elsewhere in this Handbook.
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Even for the case of exogenous categories, outstanding questions exist
as to why particular categories act as the carriers of social influence whereas
others do not. To be concrete, one could group individuals by eye color rather
than race, yet there is no serious argument that the latter helps define peer
interactions and the like. Issues of salience have received recent treatment in
the economics of identity, e.g. Akerlof and Kranton (2000; 2002) and Austen-
Smith and Fryer (2005). It seems evident that the salience of particular cate-
gories is history dependent. Loury (2002) makes a strong argument for this to
be the case in terms of racial stigma in the United States.3

This chapter ignores two important dimensions of the econometrics of
social interactions. First, we do not discuss issues of estimation, and refer the
reader to papers such as Aradillas-Lopez (2010), Bajari, Hong, Krainer, and
Nekipelov (forthcoming), Cooley (2008), de Paula (2009), Graham (2008), and
Krauth (2006a), to see the progress that has been made in understanding the
properties of various estimators. Second, we do not directly address the es-
timation of treatment effects when social interactions are present. While we
discuss the relationship between evidence of treatment effects from experi-
mental interventions in group formations, we do not discuss the evaluation of
evidence of intervention effects per se. Graham (2010) provides an extensive
synthesis of work on such questions. Similarly, we do not discuss how so-
cial interactions affect the analysis of treatment effects; see Manski (2010) for
recent work that addresses this question.

Section 2 of this chapter outlines a baseline model of decisionmaking
in group contexts. Section 3 describes linear models of social interactions.
Section 4 extends the analysis of linear models to social network and spatial
interactions models. Section 5 describes discrete choice models of social in-
teractions. Section 6 discusses identification in the context of experimental
data. Section 7 proposes some dimensions along which we think new direc-
tions on the identification of social interactions ought to proceed, noting efforts
that have already been made along these lines. Section 8 concludes.

3The relationship between behaviors, group memberships and salience is, in our view,
best understood in terms of time scales. In many cases, behavior choices are on a fast time
scale relative to endogenous group membership. The time scale for membership is in turn fast
relative to the process by which salience is determined. This perspective has the potential for
unifying these three features of socioeconomic environments both with respect to theory and
with respect to econometrics, but has yet to be pursued.
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We leave this introduction with a final observation. Loury’s analysis of
the historical specificity of stigma towards African Americans hints at a more
general claim: empirical evidence in the social economics literature ought not
to be limited to statistical studies. Within economics, a number of authors
have produced persuasive evidence of social interactions via clever choices of
environments to study. Examples include Costa and Kahn (2007) who show
how a range of outcomes for prisoners in the Civil War are associated with
social networks and Young and Burke (2001) who show how the terms of
tenant contracts in Illinois cluster around a small set of simple fractional di-
vision rules even though these rules are unrelated to the sorts of contracts
predicted by theory. Durlauf (2006) argues, more generally, that social psy-
chology experiments, ethnographic studies, and historical analyses may well
provide more persuasive evidence of social interactions than the existing body
of formal statistical studies. We do not believe that the relative weakness of
econometrically oriented studies must hold in principle. Rather, we wish to
emphasize that econometric studies of social interactions are one part of a
larger body of evidence that is relevant to their assessment and to their incor-
poration in policy evaluation. In fact, one reason why we regard the continuing
study of identification problems for social interactions as so important is that
statistically rigorous empirical work has, in our view, been the main source of
empirical progress in the social sciences.

2 Decision making in group contexts

Our baseline model of social interactions studies the joint behavior of indi-
viduals who are members of a common group g. The population size of a
group is denoted as ng. Our objective is to probabilistically describe the indi-
vidual choices of each i, ωi. Choices are made from the elements of some
set of possible behaviors Ωig. This set is both individual- and group-specific,
though the econometric literature has typically not exploited the fact that differ-
ent groups may offer different choices. This is an unexplored and interesting
possibility. For each i, ω−ig denotes the choices of others in the group, which
are one possible source of social interactions. From the perspective of econo-
metric evaluation, it is useful to distinguish between five forms of influences on
individual choices. These influences have different implications for how one
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models the choice problem. These forms are:

xi An R-vector of observable (to the modeler) individual-specific char-
acteristics;

yg An S -vector of observable (to the modeler) group-specific charac-
teristics;

µe
i (ω−ig) A probability measure, unobservable (to the modeler), that de-

scribes the beliefs individual i possesses about behaviors of oth-
ers in the group;4

εi A vector of random individual-specific characteristics describing i,
unobservable to the modeler; and

αg A vector of random group-specific characteristics, unobservable to
the modeler.

The distinction between observable and unobservable determinants of individ-
ual choices corresponds to the standard difference between observable and
unobservable heterogeneity in econometrics, or even more crudely, between
the dataωig, xi, yg and the full range of factors affecting choices. Among the dif-
ferent sources of unobserved heterogeneity, µe

i (ω−ig) functions very differently
from εi and αg since the logic of the choice problem determines the structure
of µe

i (ω−ig) in ways that do not apply to the other terms, which are shocks from
the perspective of the modeler.

Individual choices ωig are characterized as representing the maximiza-
tion of some payoff function V,

ωig ∈ argmax
λ∈Ωig

V(λ, xi, yg, µe
i (ω−ig), εi,αg). (1)

The decision problem facing an individual, a function of preferences (embod-
ied in the specification of V); constraints (embodied in the specification of Ωig);

4Li and Lee (2009) consider the use of survey data to render beliefs observables; we
discuss their work in section 5.vi. For purposes of the elucidation of the basic theory of choice
in the presence of social interactions, we focus on the case where beliefs are latent variables.
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and beliefs (embodied in the specification of µe
i (ω−ig)).5 Thus it is based on

completely standard microeconomic reasoning. While the equilibria of these
models can exhibit a range of interesting properties, such as multiple equilib-
ria and bifurcations of the equilibrium properties of the environment around
certain parameter values, these are properties of equilibria generated by this
standard choice framework.6

As suggested above this choice model with social interactions is closed
by the assumptions under which µe

i (ω−ig) is determined. Without some struc-
ture on these beliefs, the model is consistent with any observed pattern of
undominated choices. The standard assumption in the theoretical and econo-
metric literatures, which we follow, closes the model by imposing an equilib-
rium condition: self-consistency between subjective beliefs µe

i (ω−ig) and the
objective conditional probabilities of the behaviors of others given i’s informa-
tion set Fi,

µe
i (ω−ig) = µ(ω−ig|Fi). (2)

The requirement in (2) is usually called self-consistency in the social inter-
actions literature and is nothing more than an equilibrium condition, from the
perspective of empirical analysis. We assume that for each i, Fi consists of, for
all (x j) j∈g, yg, εi and αg. In other words, each agent knows his own character-
istics xi, as well as those of others in the group, the observed and unobserved
group-level characteristics of his group (and of other groups), and his idiosyn-
cratic error. Agents do not observe the ε j’s of others.

From the perspective of modeling individual behaviors, it is typically
assumed that agents do not account for the effect of their choices on the de-
cisions of others via expectations formation. The equilibrium in this model can
be seen as a Bayes-Nash equilibrium of a simultaneous-move incomplete-
information game. The individual decisions are described by

ωig = ψ(xi, yg, µ(ω−ig|Fi), εi,αg). (3)

Existence of an equilibrium for the group-wide vector of choices ωg is equiv-
alent to establishing that there exists a joint probability measure of these

5Throughout, probability measures are denoted by µ( · ).
6See surveys by Blume and Durlauf (2001), Brock and Durlauf (2001b) and Durlauf and

Ioannides (2010) for overviews of these and other theoretical features of these models as well
as the bibliographies of these papers for specific theoretical contributions.
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choices such that (3) is consistent with this joint probability measure. In ap-
plications in the literature, this is typically assured by a standard fixed point
theorem, e.g. Brock and Durlauf (2001a), Cooley (2008). Notice that it is pos-
sible for yg and µ(ω−ig|Fi) to appear in equation (1) but not in equation (3).
In this case, group behaviors and characteristics act as externalities but do
not influence individual behaviors. This distinction is discussed in Cooper and
John (1988). From the perspective of the empirical study of social interactions,
equation (3) has been the main object of interest. Typically, (3) is assumed to
exhibit a form of supermodularity in the sense that the redistribution of prob-
ability mass of µ(ω−ig|Fi) towards larger (in an element-by-element pairwise
comparison sense) vectors of choices of others increases ωig. Milgrom and
Roberts (1990) and Vives (1990) launched the now immense literature in eco-
nomics on how supermodularity affects equilibrium outcomes for a wide range
of environments; ideas from this literature often indirectly appear in the em-
pirical social interactions literature, but with the exception of Aradillas-Lopez
(2009), discussed in section 5.vi.d, this literature has been underutilized in the
study of identification.

The distinction between yg and µ(ω−ig|Fi) is important in the social
econometrics literature. Following Manski (1993), the former is known as a
contextual effect whereas the latter (including the case of perfect foresight)
is known as an endogenous effect. The importance of this distinction is that
contextual interactions involve the interactions of predetermined (from the per-
spective of the model) attributes of one agent affecting another whereas en-
dogenous interactions allow for the possibility of simultaneity of interactions in
individual outcomes.

To see how identification problems arise in a social interactions expla-
nation of inequality, consider the stylized fact that the probability that a student
graduates from high school is negatively associated with growing up in a poor
neighborhood. Among the many possible explanations for this bivariate rela-
tionship are the following:

1. Heterogeneity in educational outcomes is determined by family-specific in-
vestment. Poor parents, following Becker and Tomes (1979) or Loury (1981),
invest fewer resources in their children’s education. If parental income is a
sufficient statistic for parental investment, then the mechanism for lower grad-
uation rates among poorer individuals is observable, constituting an element
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of xi. The low graduation rate/poor neighborhood relationship is due to the
interfamily correlation of low incomes that defines a poor neighborhood.

2. Effort choices by students depend on their assessments of the payoff to
education. Poor neighborhoods contain distributions of role models that ad-
versely affect educational choices. If a poor neighborhood tends to contain
individuals whose incomes are relatively low compared to educational levels
(as would occur via self-selection of lower incomes into poor neighborhoods),
then the payoff to education may appear less attractive to high school stu-
dents and thereby affect effort in high school as well as graduation decisions.7

Relative to our candidate explanations, observed occupations and educational
levels of adults in a community are observable, then the low graduation/poor
neighborhood relationship are observable and included in yg. This is an exam-
ple of how contextual effects can link poverty and low graduation rates.

3. High school graduation decisions are influenced by the choices of peers
because of a direct desire to conform to the behaviors of others. Poorer neigh-
borhoods have the feature that low values of the µ(ω−ig|Fi) are self-reinforcing,
whereas high values of the µ(ω−ig|Fi) are self-reinforcing for more affluent
neighborhoods. Thus endogenous social interactions can explain the rela-
tionship, although one has to be careful to explain why the peer interactions
lead to lower graduation rates in poorer neighborhoods. We can offer three
possible explanations: (i) The unique equilibrium could be characterized by a
social multiplier that magnifies the consequences of income differences. (ii)
In the spirit of Brock and Durlauf (2001a), there could be multiple equilibria in
low income neighborhoods but not in more affluent neighborhoods, because
the poor may face lower marginal returns to education, which would magnify
the influence of peer interactions relative to education returns in the equilib-
rium decision rule. (iii) There could be multiple equilibria for both high and
low income neighborhoods, and an (unmodeled) selection mechanism could
favor different equilibria in different neighborhoods in a manner correlated with
income.

7Streufert (2002) formalizes this type of idea and shows that the intuitive story just given
is in fact oversimplified in the sense that the mapping from neighborhood levels of parental
education/outcome relationships to student assessments of the returns to education may not
lead to lower estimates of the returns in poorer neighborhoods but the story we describe is
possible.
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4. Parents transmit a host of skills to their children. Following Cunha and
Heckman (2007) and Heckman (2007), suppose that poorer parents tend to
have lower cognitive and non-cognitive skills which help to explain their lower
socioeconomic status and are in turn transmitted to their children. This would
imply that correlations among εi are the reason why poor neighborhoods have
lower graduation rates. This is an example of correlated unobservables and is
suggestive of the standard self-selection problem in econometrics.

5. Graduation decisions are affected by the quality of schools, where quality
involves a host of factors ranging from the distribution of teacher ability to
safety. Poorer neighborhoods have lower unmeasured school quality, then
neighborhood poverty is a proxy for a low value of αg, i.e. the graduation finding
is caused by an unobserved group effect.

The bottom line is that each of the factors we have identified as deter-
minants of individual outcomes can produce a relationship between individual
outcomes and neighborhood characteristics, even when the mechanism is in-
dividual and not socially based. Of course, no economist would ever consider
arguing that the fact that poor neighborhoods are associated with lower grad-
uation rates speaks to any of these mechanisms per se. The identification
question is whether these different explanations are distinguishable given the
sorts of data that are available for analysis. It is this question that motivates
the methods we describe.

We close this section with the observation that the behavioral model
(3) cannot be nonparametrically identified without additional assumptions on
structure. One reason for this is the possible existence of the unobserved
group effects αg which cannot be disentangled from elements of yg: Formally,
there exist classes of models such that for any proposed function φ(·) and as-
sociated choices of unobservables αg, one can choose an alternative function
φ′ and alternative choice of unobservables α′g such that all probability state-
ments about the observables are identical. Brock and Durlauf (2007) show this
for the binary choice model with social interactions which contains far more
structure than (3), a model we will discuss in section 5 below.

Nonparametric identification may also fail even if one rules out unob-
served group effects; Manski (1993) Proposition 3 gives various cases under
which nonparametric identification fails for a version of the individual decision
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function equation (3). Specifically, Manski studies an environment in which the
expected value of each person’s choice is determined by8

E(ωig|yg, xi) = φ
(
E(ωig|yg), xi

)
. (4)

Each individual is small relative to the population, producing the rational ex-
pectations equilibrium condition

E(ωig|yg) =

∫
E(ωig|yg, x) dFx|yg (5)

where Fx|yg is the conditional distribution function of xi in group g given yg. To
say each individual is small is to say that knowledge of his own xi does not
affect the distribution function of individual characteristics within his group in
a nonnegligible way. For the joint model (4) and (5) one set of conditions un-
der which nonparametric identification fails are 1) the solution to equation (5)
is unique and 2) xi is functionally dependent on yg. It is evident under these
conditions that one cannot nonparametrically identify the separate effects of xi
and yg in determining ωig since differences in outcomes between two individ-
uals with differences in xi can always be attributed to the differences in their
associated values of yg.

To make this example concrete, suppose that xi is an individual’s in-
come and yg is the mean income of a residential neighborhood. Functional de-
pendence would occur if neighborhoods were perfectly segregated by income,
i.e. no neighborhood contained individuals with different incomes. For this
case, it would impossible to distinguish the roles of individual and neighbor-
hood incomes on outcomes since they would coincide. Less trivially, suppose
that neighborhoods are fully segregated by income, which means that the em-
pirical supports of incomes across neighborhoods never intersect. Suppose
that individual income has no direct effects on outcomes whereas average
neighborhood income has a monotonic effect on equilibrium outcomes. In this
case, one could not distinguish an effect of neighborhood incomes on out-
comes from the case where individual incomes directly affect outcomes, but
do so in a step function fashion, where the jumps coincide with income levels
that define the lower endpoints of the neighborhood income supports.

8Appendix 1 contains an example of a model where this is a Bayes-Nash equilibrium
condition.
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Manski also shows that identification will fail when xi and yg are sta-
tistically independent. Non-identification follows from statistical independence
because E(ωig|yg) will not vary across groups, and so the effect cannot be
distinguished from a constant term. An obvious example of this would occur if
families were distributed across neighborhoods in such a way that each neigh-
borhood had the same mean income in realization. Manski’s result is in fact
more general and is based on the observation that statistical independence
implies that E(ωig|yg) =

∫
φ
(
E(ωig|yg), x

)
dFx, which by uniqueness means

that E(ωig|yg) must be independent of yg.9

The implication of the cases where nonparametric identification fails is
that identification of the models that fall into those cases will require various
classes of assumptions that are not well motivated by economic theory, such
as restrictions on functional forms. One might argue that this means that social
interactions empirics should focus on natural or quasi-natural experiments. We
reject this position for several reasons. First, we strongly concur with general
arguments made by Heckman (2000, 2005, 2008) on the nature of empirical
economics. The types of empirical questions one cares about in studying so-
cial interactions, such as counterfactuals, are always properties of models and
therefore require assumptions; good empirical work involves assessing factors
such as robustness rather than rejecting assumptions per se. Second, the fact
that an empirical claim is conditioned on an assumption that is not suggested
by economic theory begs the question as to the degree of plausibility of the as-
sumption. For example, in our earlier discussion of nonidentification of individ-
ual income versus residential neighborhood income effects, the model needed
to explain outcomes exclusively as a function of individual incomes required
that the mapping between the expected outcome and individual income fol-
lows a step function structure where the changes were coincident with income
levels that defined the levels that separated neighborhoods. In our view this is
a relatively implausible assumption compared to a linear model. Again, these
types of judgments are the stuff of science. Finally, we will argue that experi-
mental and quasi-experimental analyses are also dependent on assumptions
that are not justified by economic theory. Evidence of social interaction effects
based on econometric models with nonexperimental data should be treated
with a modesty which reflects the degree of belief one is willing to place on
identifying assumptions, but should not be dismissed altogether.

9The argument may be seen in Manski (1993, p. 539).
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3 Linear Models of Social Interaction

i. Basic structure

a. description

Much of the empirical literature on social economics has involved variations of
a general linear model, dubbed by Manski (1993) the linear-in-means model

ωig = k + cxi + dyg + Jme
ig + εi , (6)

where me
ig denotes the average behavior in the group, i.e.

me
ig =

1
ng

∑
j∈g

E(ω j|Fi) . (7)

Following our definitions of the variables, note that k and J are scalars whereas
c and d are R- and S - vectors, respectively.10 Claims about social interactions
are, from the econometric perspective, equivalent to statements about the val-
ues of d and J. The statement that social interactions matter is equivalent to
the statement that at least some element of the union of the parameters in d
and the scalar J are nonzero. The statement that contextual social interactions
are present means that at least one element of d is nonzero. The statement
that endogenous social interactions matter means that J is nonzero. In Man-
ski’s original formulation, yg = x̄g, where x̄g = 1

ng

∑
j∈g x j denotes the average

across individuals i of individual characteristics xi within a given group g, which
explains the model’s name. Regardless of whether they are equal, we assume
that both yg and x̄g are observable to individuals, and discuss how to relax this
below.

The linear in means model is typically invoked without any explicit at-
tention to individual decision problems and associated equilibria as described
in section 2. Appendix 1 provides an explicit derivation of the model from in-
dividual decision problems and shows how (6) describes the unique decision

10Throughout, coefficient vectors such as c are row vectors whereas variable vectors such
as xi are column vectors.
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rules in a Bayes-Nash equilibrium under a particular functional form assump-
tion on individual preferences.

We initially study the model under two assumptions on the errors. First
we assume that the expected value of εi is 0, conditional on the information
set (xi, x̄g, yg, i ∈ g),11

for each g and i ∈ g E(εi|xi, x̄g, yg, i ∈ g) = 0. (8)

Second we assume that

for each i, j, g, h such that i , j or g , h
cov(εiε j|xi, x̄g, yg, i ∈ g, x j, x̄h, yh, j ∈ h) = 0.

(9)

Equation (9) eliminates conditional covariation between the errors. The inclu-
sion of the group memberships, e.g. i ∈ g rules out some relationship between
the identity of the group and model errors, thereby allowing us to treat groups
as exchangeable.

From equations (6) and (7), and assuming that each individual is small
enough relative to the group that the effect of his knowledge of his own εi on
me

ig can be ignored, equilibrium implies that each actor’s expected average
behavior will be equal to a common value. This common value is derived in
appendix 1 and is described by

me
ig = mg ≡

k + cx̄g + dyg

1 − J
. (10)

This equation says that the individuals’ expectations of average behavior in
the group equal the average behavior of the group, and this in turn depends
linearly on the average of the individual determinants of behavior, x̄g, and the
contextual interactions that the group members experience in common, yg.
The condition J < 1, which is required for equation (10) to make sense, is
guaranteed to hold in the game-model of appendix 1. There, J maps the
marginal rate of substitution between private return and social conformity, a
non-negative real number, into the interval [0, 1).

11The conditioning argument i ∈ g means that one is conditioning on the fact that i is a
member of group g.
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b. reduced form

Substitution of (10) into (6) eliminates mg and so provides a reduced form
version of the linear in means model in that the individual outcomes are deter-
mined entirely by observables and the individual-specific error:

ωig =
k

1 − J
+ cxi +

J
1 − J

cx̄g +
d

1 − J
yg + εi. (11)

Much of the empirical literature has ignored the distinction between endoge-
nous and contextual interactions, and has focused on this reduced form, i.e.
focused on the regression

ωig = π0 + π1xi + π2yg + εi , (12)

where the parameters π0, π1, π2 are taken as the objects of interest in the em-
pirical exercise. A comparison of (12) with (11) indicates how findings in the
empirical literature that end with the reporting of π0, π1, π2 inadequately ad-
dress the task of fully characterizing the social interactions that are present in
the data. For example, from the perspective of (12), the presence of social
interactions is equivalent to π2 , 0, whereas from the perspective of (6) this
is neither necessary nor sufficient for social interactions to be present since
J = 0 is neither necessary nor sufficient for π2 = 0. To be clear, this observa-
tion does not mean that estimates of (12) are uninformative, rather that these
estimates should be mapped to structural parameters in the sense of (6) when
identification holds, and that if identification does not hold, then the informa-
tional limits of (12) in terms of distinguishing types of social interactions should
be made explicit.

Equation (12) is nonetheless the source of much of the current econo-
metric evidence on social interactions. Datcher (1982) should be regarded as
a seminal contribution to the social economics literature since it appears to be
the first empirical study to propose (11) as an estimating equation. Her em-
pirical specification has generally remained the empirical standard despite the
importance that Manski (1993) subsequently attached to the contextual ver-
sus endogenous distinction in econometric work. An exception is Gaviria and
Raphael (2001), although they do this by arguing that contextual interactions
are not relevant for their context, teen behaviors.
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The reduced form version of the linear in means model illustrates some
features of the structure that are of interest. First, the linear in means model
limits the effects of reallocations of individuals across groups. To see this, sup-
pose one thinks of each choice in the population as ωig = φ(xi, yg) + εi. Sup-
pose that yg is a scalar and that yg = x̄g this means that ωig = φ(xi, x−ig) + εi,
where x−ig denotes the vector of individual characteristics other than xi among
group g members with typical element x−i jg. Finally, assume all groups are of
equal size. Under the linear functional form (11), for all j, ∂2φ/∂xix−i jg = 0.
This is the condition under which all allocations of individuals across groups
produce the same expected population-wide average outcome for

∑
j∈g ω jg.

This was first recognized in Becker’s (1973) analysis of efficiency in the mar-
riage market, in which groups are of size 2 and naturally extends to groups of
any size. (See Durlauf and Seshadri (2003).) It is the case, extending an ex-
ample of the type in Durlauf and Seshadri (2003), that if groups are of different
sizes, the reallocation of individuals across them can affect average outcomes.
This nonetheless does not diminish the qualitative point that the fact that all
cross partial derivatives equal 0 in the reduced form of the linear in means
model severely restricts the effects of reallocations of group memberships.

Second, if policies are available to influence xi and/or yg , then these in-
teractions can be identified even if the structural parameters are not identified.
This observation is elaborated in Manski (2010) who emphasizes the distinc-
tion between structural model identification and potential outcomes identifica-
tion which lies at the heart of treatment effect analysis. Another way to think
about this distinction is that for many policy contexts, the structural model is
of no intrinsic interest. Brock, Durlauf, and West (2003) argue that this is the
case for a range of macroeconomic contexts. However, this type of identifica-
tion will not allow the policy analyst to address issues where the endogenous
social interactions are themselves of fundamental policy relevance, as may be
the case if these interactions alter the distribution of individuals across groups.

ii. instrumental variables and the reflection problem

We first consider the estimates of the regression coefficients for (6) under the
expectations formation restriction (10). It is obvious that if ω̄g is projected
against the union of elements of x̄g and yg, this produces the population mean
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mg. Hence, we can proceed as if mg is observable. Put differently, our identi-
fication arguments rely on the analogy principle which means that one works
with population moments to construct identification arguments.12 Since yg ap-
pears in (10), it will not facilitate identification. As we shall see, identification
via instrumental variables is determined by the informational content of x̄g rel-
ative to yg.

As first recognized by Manski (1993), identification can fail for the lin-
ear in means model when one focuses on the mapping from reduced form
regression parameters to the structural parameters. This may be most easily
seen under Manski’s original assumption that yg = x̄g. This means that every
contextual effect is the average of a corresponding individual characteristic. In
this case, equation (10) reduces to

mg =
k + (c + d)yg

1 − J
. (13)

This means that the regressor mg in equation (6) is linearly dependent on the
other regressors, i.e. the constant and yg. This linear dependence means that
identification fails: the comovements of mg and yg are such that one cannot
disentangle their respective influences on individuals. Manski (1993) named
this failure the reflection problem. Metaphorically, if one observes that ωig is
correlated with the expected average behavior in a neighborhood, (13) indi-
cates it may be possible that this correlation is due to the fact that mg may
simply reflect the role of yg in influencing individuals.

Under what conditions is this model identified? A necessary condition
is that Manski’s assumption that yg = x̄g is relaxed. This will allow for the pos-
sibility mg is not linearly dependent on the constant and yg. The reason for this
is the presence of the term cx̄g/(1 − J) in equation (10). This term can break
the reflection problem. This will happen if the cx̄g/(1 − J) term is not linearly
dependent on a constant and yg. When this is so, mg cannot be linearly depen-
dent on the other regressors in equation (10). This immediately leads to the
argument in Brock and Durlauf (2001b) that a necessary condition for identi-
fication in the linear in means model, is that there exists at least one element
of xi whose group level average is not an element of yg , while Durlauf and
Tanaka (2008) provide a sufficient set of conditions. Necessity and sufficiency

12Goldberger (1991, p. 117) gives a concise description.
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can be linked as follows. Let proj(a|b, c) denote the linear projection of the
scalar random variable a onto the elements of the random vectors b and c.13

Consider the projections proj(ωg|1, yg, x̄g) and proj(ωg|1, yg), where 1 is simply
a random variable with mean 1 and variance 0, corresponding to the constant
term in (6). The first projection provides an optimal linear forecast (in the vari-
ance minimizing sense) of the group average choice, ω̄g = (1/ng)

∑
i∈g ωig,

conditioning on the random variables defined by 1 and the elements of yg and
x̄g, whereas the second projection provides the optimal linear forecast when
only 1 and the elements of yg are used. The difference between the two projec-
tions thus measures the additional contribution to predicting ω̄g beyond what
can be achieved using x̄g in addition to 1 and yg. When this marginal contribu-
tion is nonzero, then it is possible to estimate equation (10) using instrumental
variables for ω̄g or equivalently estimate (6) when (10) is imposed by instru-
menting mg.14 Formally,

Theorem 1. Identification in the linear in means model. The parameters k,
c, J and d are identified if and only if proj(ω̄g|1, yg, x̄g)− proj(ω̄g|1, yg) , 0.

The intuition for the theorem is simple; identification requires that one
can project ω̄g (equivalently) onto a space of variables such that the projection
is not collinear with the other regressors in the model. As such, the theorem
verifies that identification in the linear in means model is a species of identifi-
cation of a linear simultaneous equations system, as argued above.15

Theorem 1 was derived under the assumption that x̄g and yg are known
to the individual decisionmakers at the time that their choices are made. This
assumption is a strong one and further may appear to be inconsistent with
our assumption that ω̄g is unobservable to them. This latter concern is not
tenable: in a context such as residential neighborhoods, it is possible for a

13Formally, this is the projection of a onto the Hilbert space generated around the elements
of b and c where the inner product between any two elements is the expected value of their
product so that the metric measuring the length of an element is the square root of the inner
product of an element with itself.

14Recall that in equilibrium, proj(ω̄g|1, yg, x̄g) = proj(mg|1, yg, x̄g) and proj(ω̄g|1, yg) =
proj(mg|1, yg).

15The conditions of the theorem do not preclude a functional dependence of xi on yg ,
which, combined with the uniqueness of mg, means that the nonparametric analog to the
model is not identified, following Manski (1993, Proposition 3). This observation builds on
discussion in Manski (1993, p. 539).
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contextual effect such as average income to be observable whereas the school
effort levels of children in the neighborhood are not. However, it is important
to understand the interactions of relaxing are informational assumptions on
identification. This is the contribution of Graham and Hahn (2005). The models
they study can be subsumed as variants of a modified version of equation (6):

ωig = k + cxi + d E(yg|F) +Jmg + εi (14)

where individuals are assumed to possess a common information set F. As
such, it is clear that the conditions for identification in theorem 1 are easily
generalized. One simply needs a set of additional instruments qg such that
the elements of qg can jointly instrument E(yg) and mg. As they observe, the
variables qg constitute exclusion restrictions and so require prior information
on the part of the analyst. For their context, yg is a strict subset of x̄g, so it is
difficult to justify the observability of those elements of x̄g that do not appear in
yg when the others are by assumption not observable. In our view, the appro-
priate route to uncovering valid instruments qg, under the Graham and Hahn
information assumptions, most likely requires the development of an auxiliary
model of xi and hence x̄g. In other words, Graham and Hahn’s concerns reflect
the incompleteness of (14) in the sense that the individual characteristics are
not themselves modeled. Hence, we interpret their argument as one that calls
for the embedding of outcomes such as (14) in a richer simultaneous equa-
tion system, possibly one including dynamics, which describes how individual
characteristics are determined. We fully agree with Graham and Hahn that in
isolation, finding valid instruments for (14) is difficult, but would argue that this
difficulty reflects the limitations of studying ωig in isolation rather than as one
of a set of equilibrium outcomes.

We now evaluate the reflection problem for some econometric mod-
els that differ from (6) in various ways that are common in empirical work.
Once one considers econometric structures outside the linear cross-section
framework, the reflection problem may not arise, even if there is a one-to-one
correspondence between individual and contextual interactions. We consider
three alternative structures.
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a. partial linear in means models

The linear structure in (6) is typically only theoretically justified under strong
functional form assumptions for utility, as shown in appendix 1, which leads to
the question of whether relaxation of the linearity assumption affects identifica-
tion. One such relaxation is studied in Brock and Durlauf (2001b) and involves
a particular nonlinear generalization of (6) under rational expectations

ωig = k + cxi + dyg + Jµ(mg) + εi. (15)

This type of structure is known as a partial linear model. Brock and Durlauf
establish that the parameters of this model are identified for those elements
of the space of twice differentiable functions, for known µ(mg) , so long as
∂2µ(mg)/∂m2

g , 0, outside of nongeneric cases. The intuition is straightfor-
ward; the reflection problem requires linear dependence between group out-
comes and certain group-level aggregates, which is ruled out by the nonlin-
earity in (15). Note that there does not exist any identification results, as far
as we know, if the functional form for µ(mg) is unknown, so in this sense the
identification of (15) does not exploit results from the semiparametric literature
on partial linear models.16

The finding that partial linear variants of (6) do not suffer from the re-
flection problem is not a surprise from the perspective of the simultaneous
equations literature. McManus (1992), in what appears to be an underappre-
ciated paper, illustrates how for a broad class of parametric nonlinear simul-
taneous equations models, subsets of nonidentified models are nongeneric.
For example, McManus (1992, pg. 8) shows in his pedagogical example that
“. . . First the set of δ values which correspond to identified (non identified) mod-
els forms an open and dense (nowhere dense) subset of the real line. . . ” He
develops a general argument which formalizes this basic idea. Brock and
Durlauf (2001b, p. 3371) adapt McManus’s argument to show that “. . . the lo-
cal nonidentification of the linear-in-means model can be perturbed away by a
C2-small change.” See Brock and Durlauf (2001b, Chap. 54) for the details of
this extension to social interaction models.

This example of generic identifiability of a nonlinear in means model
illustrates the importance of treating the quadratic utility function in appendix 1

16See Tamer (2008) for a survey.
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as the true preference specification as opposed to regarding it as some sort of
second-order approximation. As a second order approximation, the preference
specification leads to erroneous conclusions about identification. Interestingly,
a corresponding set of findings have been developed by Ekeland, Heckman,
and Nesheim (2004) in the context of hedonic models. These authors show
that previous claims of lack of identification in hedonic models are special to
linear specifications that derive from a quadratic utility specification. While the
arguments as to why identification holds for preferences outside the quadratic
case, the hedonic context provides another demonstration of how the use of
quadratic approximations can lead to misleading conclusions on identifiability
for economically important environments.

b. dynamic linear models

Similarly, dynamic analogs of the linear in means model may not exhibit the
reflection problem. Brock and Durlauf (2001b) illustrate this with the dynamic
social interactions model

ωigt = k + cxit + dygt + βmg t−1 + εit

where for all s, t , 0,
cov(εi t, εi t−s) = 0. (16)

This model avoids linear dependence between the contextual and endogenous
variables since

mgt =
k + cx̄gt + dygt

1 − βL
(17)

where L is a lag operator. Equation (17) implies that mgt depends on the entire
history of x̄gt and ygt. This model is essentially backwards looking and is driven
by the idea that current behaviors are directly affected by past beliefs. A more
natural approach, of course, is to consider how beliefs about the future affect
current behaviors. An example of a model in this class is

ωigt = k + cxit + dygt + βmg t+1 + εit (18)

where (16) is again assumed. This model is equivalent to the workhorse ge-
ometric discount model in rational expectations (Hansen and Sargent, 1980).
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The equilibrium average choice level for a group equals, following Hansen and
Sargent,17

mgt =
k

1 − β
+
∞∑

s=0

βs Et{cx̄g t+s + dyg t+s}. (19)

It is immediate from (19) that the regressors in (18) are linearly independent
so long as x̄gt and ygt are not both random walks. Identification of this class of
dynamic models was originally studied in Wallis (1980) and has recently been
explored in Binder and Pesaran (2001).

c. heirarchical models

In fields such as sociology, social interactions are typically explored using hi-
erarchical models, i.e. models in which contextual interactions alter the coeffi-
cients that link individual characteristics to outcomes. See Bryk and Rauden-
bush (2001) for a full description of the method. The reason for this appears
to be a different conceptualization of the meaning of social interactions in eco-
nomics in comparison to other social sciences. Hierarchical models appear, in
our reading, to be motivated by a view of social groups as defining ecologies
in which decisions are made and matter because different social backgrounds
induce different mappings from the individual determinants of these behaviors
and choices, cf. Raudenbush and Sampson (1999). Economics, in contrast,
regards the elements that comprise endogenous and contextual social inter-
actions as directly affecting the preferences, constraints, and beliefs of agents
and so treats them as additional determinants to individual specific charac-
teristics, xi. That said, there do not exist formal arguments for favoring one
approach versus another at an abstract level. At the same time the additivity
assumption in both approaches is ad hoc from the perspective of economic
theory, even if the assumption is ubiquitous in empirical practice.

For hierarchical models, there has been no attention to the reflection
problem. The only exception of which we are aware is Blume and Durlauf
(2005). Here we modify the Blume and Durlauf analysis and consider a for-
mulation that closely follows the conceptual logic of hierarchical models in that

17In this formulation we restrict ourselves to fundamental solutions of the expected average
choice level. The possibility of a nonfundamental solution, i.e. bubbles, is not germane to the
discussion.
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social interactions are entirely subsumed in the interactions on parameters.
Formally, this means that individual outcomes obey

ωig = kg + cgxi + εi (20)

with individual- and group-specific components obeying

kg = k + dyg + Jmg (21)

and

cg = c + y′gΨ + mgψ (22)

respectively. In (22), Ψ is a matrix and ψ is a vector. We omit any random terms
in (21) and (22) for simplicity, although hierarchical models typically include
them. This formulation assumes that the endogenous effect directly affects the
individual level coefficients and so differs from the Blume and Durlauf example.
Imposing rational expectations, the hierarchical model described by (20)-(22)
is equivalent to the linear model

ωig = k + cxi + dyg + Jmg + y′gΨxi + mgψxi + εi. (23)

Hence, the difference between the linear model used in economics and the
hierarchical structure is the addition of the terms y′gΨxi and mgψxi by the hi-
erarchical model to equation (6). Thus the hierarchical model does nothing
deeper than add the cross products of variables in (6) to allow for nonlinearity.
As such, the approach is far behind the econometrics literature on semipara-
metric methods which allows for much deeper forms of nonlinearity. On the
other hand, the use of cross products of variables is still common in empirical
economics.

Can this model exhibit the reflection problem? The self-consistent so-
lution to (23) is

mg =
k + cx̄g + dyg + y′gΨx̄g

1 − J − ψx̄g
. (24)

Recall that the reflection problem necessarily emerged in (6) when yg = x̄g. If
we impose this condition in the hierarchical model, (24) becomes

mg =
k + (c + d)yg + y′gΨyg

1 − J − ψyg
. (25)
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Equation (25) makes clear that the relationship between mg and the other re-
gressors is nonlinear. Further, the presence of y′gΨyg in the numerator and
−ψyg in the denominator ensures that linear dependence will not hold, except
for hairline cases, so long as there is sufficient variation in xi and yg.

Hierarchical models thus exhibit different identification properties from
linear in means models because their structure renders the endogenous effect
mg a nonlinear function of the contextual interactions yg (and also a nonlinear
function of x̄g if this variable is distinct from yg). The reflection problem can
thus be overcome without prior information about the relationship between x̄g
and yg. However, this does not mean that users of hierarchical models of so-
cial interactions can ignore the possibility of endogenous social interactions
and only focus on contextual effects. The nonlinear relationship between mg
and yg means that the failure to account for endogenous social interactions
in hierarchical models will lead to inconsistent estimates of the contextual ef-
fect parameters. Further, hierarchical models cannot be used to evaluate the
interactions of changes in different variables, or the interactions on individ-
ual outcomes of altering group memberships, e.g. by changing school district
boundaries.18 These types of policy interventions will depend on the value
of all the social interactions parameters and the attendant nonlinearity de-
scribed by equation (25). Hierarchical models thus contrast with the linear
in means example given in Manski (2010) where policy evaluation does not
require knowledge of all parameters.

Do these cases imply that the reflection problem is a special one, i.e.
that it only arises for cross-sectional data and linear models which together
render instrumental variable requirements difficult? We believe that this would
be an incorrect assessment of the importance of Manski’s result. While alter-
native specifications may imply that identification holds per se, it may also be
the case that mg is highly correlated with combinations of the other determi-
nants of individual outcomes. Even if identification holds, parameter estima-
tion may be highly imprecise, for the exact same reasons that the reflection
problem leads to nonidentifiability in some contexts. Therefore, we regard the
reflection problem as a fundamental difficulty in estimating social interactions.

18The argument we make with respect to assessing changes in group memberships is
an example of the discussion found in section 3.i.b concerning the special implications of the
linear in means model for the aggregate effects of the reallocation of individuals across groups.



24

iii. variance-based approaches

As noted above, a second route to identification of the linear in means model
may be derived from the covariance structure model errors. This approach is
discussed in classic treatments of identification such as Fisher (1966) and re-
lies on strong prior information on the covariance structure of a given model’s
errors. In general, this approach to identification became unpopular in eco-
nomics because modern econometrics has emphasized the relaxation of as-
sumptions on error structures, as manifested in the work on heteroskedastic
and autocorrelation consistent covariance matrix estimation initiated by White
(1980).19 This emphasis on econometric analysis under weak assumptions
on errors is properly regarded as a major breakthrough since in many socioe-
conomic contexts, assumptions such as homoskedasticity have no theoretical
justification. To the extent that theory does constrain the stochastic processes
for model errors, modern econometrics has focused on incorporating this de-
pendence into the empirical analysis. Heckman (2001) gives an overview of
this perspective for microeconomics, which is of course the locus of social
interactions. It is therefore unsurprising that most work on empirical social
economics has avoided exploiting covariance restrictions as a source of iden-
tification.

That said, one can imagine contexts where strong assumptions are
relatively appealing. One example is randomized experiments in which ex-
changeability of the individuals can be invoked and so assumptions of inde-
pendence and identical errors can be justified by appeal to deFinetti’s The-
orem, which in essence says that the probability measure for an infinite ex-
changeable sequence of random variables can be written as a mixture of
joint probability measures for i.i.d. random variables; since one of the com-
ponents of the mixture is realized in the data, we can treat the data as if it
were i.i.d.20 This is the sort of context that motivated a strategy developed
in Graham (2008) to uncover social interactions via covariance restrictions for
Project Star, an experiment designed to study the consequences of classroom
size. In Project Star students were randomly distributed across classes of
different sizes; teachers were randomly assigned as well.

To see how this approach, which Graham refers to as the method of
19See West (2008) for an overview.
20See Bernardo and Smith (1994, section 4.2) for discussion.
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variance contrasts, works, we employ a simplified version of his model, which
assumes that individual outcomes are affected by the realized mean outcomes
in classrooms,21

ωig = Jω̄g + εi = Jmg + εi + Jε̄g. (26)

Individual and contextual interactions are thus assumed away, which renders
the instrumental variable strategies we have described for identification impos-
sible. Graham further assumes that the individual errors obey

var(εi|i ∈ G) = σ2
ε (27)

and

for i , j, cov(εiε j|i, j ∈ g) = 0. (28)

Graham’s insight, which builds on earlier work by Glaeser, Sacerdote, and
Scheinkman (1996) (which will be discussed in the context of discrete choice
models) is that the presence of J affects the variance of ωig and may be used
for identification. For this model, one can think of the outcomes as gener-
ated by a reduced form in which the errors fully determine the outcomes, in
other words, all information about the model parameters is embedded in the
variance covariance matrices of the various ωg’s. Graham shows that for the
model (26), under assumptions (27) and (28):

var(ωg) =

(
Ing −

J
ng
ιng


−2

σ2
ε (29)

where Ing is an ng × ng identity matrix and ιng is a ng × ng matrix of 1’s. Eq. (29)
implies that if there are two groups with different sizes, one can use the dif-
ferences in the intergroup outcome variances to identify J. Following Graham,
this result follows intuitively from the fact that for larger groups the variance
in ω̄g is smaller. We should note that the assumption expressed by (28) is
stronger than what can be justified by exchangeability of the individual errors
per se. Durlauf and Tanaka (2008) explicitly show that Graham’s results follow
if one starts with exchangeability of the individual errors and further assumes
that error variances are independent of classroom size.

21Graham allows for unobserved group level interactions, which we consider below.
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iv. unobserved group effects

As suggested in the introduction, one of the major limits to identification of
social interactions is the presence of unobserved group-level heterogeneity.
To introduce this factor, we modify (6) to

ωig = k + cxi + dyg + Jmg + αg + εi (30)

where rational expectations is imposed as in (10). The associated reduced
form for (30) is

ωig =
k

1 − J
+ cxi +

J
1 − J

cx̄g +
d

1 − J
yg +

1
1 − J

αg + εi. (31)

It is evident from (31) that correlation of αg with the regressors in the equation
can lead to identification problems. It is hard to see how one can rule such
correlations out. For example, correlation with xi naturally arises from self-
selection and correlation with yg naturally arises from imprecise or incomplete
measurement of group contextual effects.

a. instrumental variables

One approach to dealing with unobserved group level heterogeneity in (30) or
(31) is the use of instrumental variables. This approach is generally difficult
to justify in addressing unobserved group characteristics for both the linear in
means and other models. The reason for the difficulty is that αg is itself un-
dertheorized, in other words, this term captures aspects of a group that affect
outcomes which the model does not explicitly describe. Beyond this, valid in-
strumental variables require the property that they have been excluded from
(30) as either individual or contextual determinants of outcomes. It is hard to
see how, in typical socioeconomic contexts, such instruments may be found,
since the instruments must be known on a priori grounds to be uncorrelated
with both the undertheorized αg and εi. Social interactions models are typically
what Brock and Durlauf (2001c) have termed openended, which means that
their theoretical structure does not naturally identify variables to exclude from
equations such as (30). In other words, social interactions theories are ope-
nended because the presence of a given type of social interaction does not
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logically preclude the empirical relevance of other theories; the econometric
analog of this is that social economics models do not provide a logical ba-
sis for choosing instruments. This is quite different from rational expectations
models, for example, whose logic often allows one to express linear combina-
tions of variables as forecast errors, which must logically be orthogonal to an
agent’s information set; in macroeconomics a key example of this is the Euler
equation in a stochastic optimization model.

We suspect that theory openendness for a given social interactions
model, combined with an undertheorized αg, have (at least implicitly) rendered
instrumental variables strategies relatively uncommon in social interaction con-
texts, for both the linear in means and other models. One exception is Cooley
(2008) who makes a careful substantive argument to justify her use of instru-
ments. Cooley’s objective is to estimate the effects of peer educational out-
comes on individual students in a classroom; for her context teacher quality
is an unobserved group effect. Cooley studies reading achievement in North
Carolina and proposes an identification strategy that exploits an education re-
form enacted in that state that went into effect in the 2000-2001 academic year.
The reform mandated that students who scored below a certain level on end of
year reading tests are to be held back for the next year. For a rich panel data
set on classrooms, Cooley proposes as an instrument the percentage of stu-
dents who are held accountable (i.e., the percentage of students who scored
below the cutoff in the prior year interacted with a dummy for being a 5th grader
in 2001 or later). Cooley argues that these “in danger of failing” students face
incentives to work harder under the educational reform. Classes with a higher
percentage of low-achievers would see a larger shift in peer achievement after
accountability. She thus contrasts comparable (from the perspective of student
composition) classrooms before and after the educational reform to estimate
a peer effect, with 4th grade classrooms acting as a control group.22

An obvious objection to this strategy is that for a given set of classroom
student characteristics, unobserved teacher quality may have shifted after the
reform, as teachers adjusted their behavior in response to the reform. Cooley
addresses this objection by appealing to the history of educational reform in
North Carolina and argues that a post 2000 shift in teacher behavior is rela-
tively implausible. The 1996 reforms included school and teacher bonuses for
growth in scores and for the percentage of students who met or exceeded the

22We thank Jane Cooley for helping with this description.
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reading level that later was used to determine whether a grade should be re-
peated. Thus it is plausible to claim that adjustments in teacher behavior most
probably date from then. Of course, Cooley does not “prove” that her instru-
ment is valid. Our view is that that she has made a case that the instrument is
a plausible one so that her findings should update researchers’ beliefs about
classroom peer effects. We believe this careful type of argumentation can be
replicated in other contexts.

Some uses of instrumental variables fall under the rubric of quasi-
natural experiments. A recent example is Cipollone and Rosolia (2007) which
we describe in some detail as it illustrates the strengths and weaknesses of
quasi-experimental data as a source for evidence on social interactions. Their
analysis examines the effects of changes in male high school graduation rates
on female high school graduation rates using a change in Italy’s compulsory
military service laws which exempted male students in schools located in ar-
eas damaged by a 1980 earthquake. Cipollone and Rosolia compare two
groups of schools. The first group of schools are located in towns that ex-
perienced relatively little earthquake damage (based on official assessments)
and yet were included in the draft exemption. The second group of schools
were located in towns that were near the towns whose schools comprise the
first group; the authors argue that these towns suffered similar damage so
that their failure to receive an exemption was arbitrary. Cipollone and Roso-
lia find statistically significant higher graduation rates for females in the high
schools subject to the exemption when compared to females in the compara-
ble high schools that were not subject to exemption. One limitation of this type
of calculation is that it is difficult to interpret in terms of social mechanisms, an
issue recognized by the authors. Regardless of this, the finding itself may be
problematic for reasons that are delineated in Heckman (1998). One reason
involves what Heckman, Urzua, and Vytlacil (2006) have dubbed “essential
heterogeneity”: if the effect of increased male graduation on a girl’s payoff dif-
ferential between graduating and dropping out is heterogeneous, then it is un-
clear how to interpret the Cipollone and Rosolia conclusion that a 1% increase
in male graduation leads to a 0.7% increase in female graduation in terms of
policy counterfactuals, i.e. increases in male graduation rates need not have
this effect on female graduation rates in schools that differ from those in the
sample or contexts different from the particular quasi-experiment under study.
Further, one can even question whether this statistical finding is evidence of a
social interaction per se. Compulsory military service was previously subject to
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exemptions for high school graduation. Thus, the general exemption changed
the composition of males in a school in particular ways. In essence the general
exception affected the attendance of males whose unobservable characteris-
tics made their graduation behavior especially sensitive to the policy change
relative to the previous regime. Suppose that there is assortative matching on
these unobservable characteristics in the formation of romantic relationships.
One can reasonably imagine that an associated increase in graduation for fe-
males occurs because of the preservation of romantic relationships that would
have been severed by school (and community) withdrawal for military service.
The message of this possibility is that the translation of what amount to partial
correlations on the behavior of one group with the behaviors of another group
into causal claims about social interactions that can answer policy relevant
questions requires careful consideration of counterfactuals and the nature of
unobservable individual-specific heterogeneity, which is a theme of Heckman’s
(1998) analysis.

b. panel data

A second standard strategy for dealing with unobserved group interactions
involves the use of panel data to difference the interactions out. Supposing
that the variables in (30) are indexed by t, this amounts to working with

ωigt −ωig t−1 = c(xit − xi t−1) + d(ygt − yg t−1)

+ J(mgt −mg t−1) + εit − εi t−1 .
(32)

Recall that our identification theorem 1 depended on the relationship between
x̄g, yg and mg. For (32), theorem 1 immediately can be applied if one considers
the requirements of the theorem as they apply to x̄gt − x̄g t−1, ygt − yg t−1 and
mgt −mg t−1. So long as there is temporal variation in x̄gt and ygt i.e. the first
differences in (32) are not zero, then the conditions for identification will be the
same as in the original linear model without αg. Note that variation in x̄gt and/or
ygt will induce variation in mgt over time. An early example of this strategy is
Hoxby (2000) who focuses on variation in the percentage of a student’s own
ethnic group in a classroom.

For those elements of xit and ygt that do not vary over time, differencing
means that their associated coefficients will not be identified. Defining the
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time invariant elements of ygt as y1
g, the lack of identification of their associated

parameters d1 occurs for the obvious reason that one cannot differentiate the
effect of d1y1

g from αg. On the other hand, all elements of xit may be identified
if additional assumptions are placed on εit. As formally discussed in Graham
and Hahn (2005), suppose that

E(εit|Fx|gt, ygt,αgt, i ∈ g at time t)) = 0.

In this case, intragroup variation in xit at a single point in time can identify
all of the elements of c. The reason for this is that for group g at a fixed t,
k + dygt + Jmgt + αgt acts as a constant term for the members of the group.
Brock and Durlauf (2001b, 2006, 2007) use this same argument for cross-
section identification of individual interactions coefficients in discrete choice
models. As noted by Graham and Hahn, this type of argument is originally
due to Hausman and Taylor (1981).

c. variance approaches and group-level unobservables

Graham (2008) provides a strategy for identifying the parameter for endoge-
nous interactions in the presence of unobserved group interactions in parallel
to the arguments that identified J in (26). Graham works with the natural gen-
eralization of (26):

ωit = Jω̄g + αg + εi

= Jmg + αg + εi + Jε̄g

Critically, Graham assumes that αg is a random effect, specifically requiring
that the conditions

cov(αgεi|i ∈ g) = 0 (33)

and

var(αg|i ∈ g) = σ2
α (34)

hold in addition to equations (27) and (28). Equation (33) states that individual
and group unobservables are uncorrelated and is justified in Graham’s context
by the random assignment of teachers across classrooms. Equation (34) rules
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out any dependence of the variance of unobserved group effect on group size.
In a classroom context, this means that the variance of teacher quality does
not depend on the number of students. In a direct generalization of equation
(29), Graham (2008) shows that

var(ωg) =

(
Ing −

J
ng
ιng

)−1

(σ2
αιng + σ2

εIng)

(
Ing −

J
ng
ιng

)−1

, (35)

which means that one can again use differences in the variance of outcomes
across groups of different sizes to identify J.

Taken together, assumptions (27) and (34) are, in our judgment, prob-
lematic for an experiment designed to assess how classroom size affects
learning; while the objective of the experiment was presumably to understand
how first moments are affected, there is no reason to think that second mo-
ments would be unaffected if the first moments are classroom-size dependent.
In other words, it is one thing to argue that prior to assignment, students are
exchangeable with one another and teachers are exchangeable with one an-
other. After assignment, one of the student’s characteristics is the size of
the classroom to which he has been assigned. Effects of classroom size on
the variance of shocks is especially plausible if the mechanisms that produce
teacher quality and idiosyncratic student outcomes are nonlinear, which is
a major issue in the econometrics of discrimination.23 That said, Graham’s
recognition that the assumption that if unobserved group effects are random
rather than fixed leads to new routes to identification is a significant method-
ological advance. And of course, our point is not that Graham’s empirical
claims are incorrect, but rather that a reader needs to assess the plausibility
of the assumptions that permit identification for his context.

v. self-selection

It is natural for many social contexts to expect individuals to self-select into
groups. This is most obvious for the case of residential neighborhoods; models
such as Bénabou (1993, 1996), Durlauf (1996a,b) and Hoff and Sen (2005),

23See Heckman (1998).
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for example, all link social interactions to neighborhood choice. In terms of
estimation, self-selection generally means that equation (8) is violated.

Self-selection has typically been addressed using instrumental vari-
ables methods. Evans, Oates, and Schwab (1992) is an early example. The
use of instrumental variables as a solution to self-selection suffers, in our
view, from the problem of theory openendedness as was discussed in the
context of unobserved group effects. However, unlike the case of unobserv-
able group interactions, self-selection involves a specific behavior on the part
of the agents under study which can provide additional insight into instrument
validity. For example, Evans, Oates, and Schwab (1992) focus on estimating
the effect of the percentage of students in a school who are disadvantaged
on high school dropout and teen fertility rates. The measure of school level
socioeconomic disadvantage is instrumented with metropolitan area levels of
unemployment, college completion, poverty rates and median income. The in-
struments are justified on the grounds that while families may choose schools
within a metropolitan area, they are unlikely to choose metropolitan areas be-
cause of schools. This may be correct as far as it goes, but the relevant ques-
tion for instrument validity is whether the instruments are uncorrelated with εi.
One obvious reason why this is true is that drop out and pregnancy decisions
will be related to labor market opportunities, which by the logic of Evans, Oates
and Schwab’s choice of the instruments would be defined at the metropolitan
and not the school level. Durlauf (2004), on the other hand, suggests reasons
why the instruments may not be valid.

A distinct source of instruments to account for self-selection has been
quasi-experiments. A recent example is Lalive and Cattaneo (2009) who study
the effect on schooling decisions in Mexico by the PROGRESA program. This
program rewards school attendance by rural children with small cash subsi-
dies to their families. Lalive and Cattaneo measure social interactions via the
effects by schoolmates whose families are eligible for PROGRESA on their
ineligible classmates. The basic idea is that if PROGRESA directly raised at-
tendance of the first set of children, peer effects must explain why attendance
among the ineligible increased. This type of exercise is informative, but again
suffers from interpretation problems of the type we have raised in the con-
text of Cipollone and Rosolia (2007). We simply note here that the Heckman
(1997) and associated critiques have equal force when instrumental variables
are employed to account for self-selection as when they are used to account
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for group level unobservables.

In our view, the preferred approach to dealing with self-selection is to
treat group choice and behavior within a group as a set of joint outcomes,
and conduct empirical analysis from the perspective of both behaviors. Un-
like the instrumental variables approach, this has interesting implications for
identification, at least for the linear model. Brock and Durlauf (2001b) first
recognized this possibility and studied the case of self-selection between two
groups; Brock and Durlauf (2002, 2006) and Ioannides and Zabel (2008) ex-
tended this analysis to an arbitrary finite number of groups. At an intuitive
level, this is not surprising. Self-selection represents a behavior on the part of
an agent and so should contain information about his preferences, which will
depend on the social interactions that occur in groups over which he is choos-
ing.24 Unlike the instrumental variable approach, modeling self-selection ex-
ploits this information rather than treats it as a nuisance.

Following Heckman’s original (1979) reasoning, one can think of indi-
viduals choosing between groups g = 1, . . . , G based on an overall individual-
specific quality measure for each group:

I∗ig = γ1xi + γ2yg + γ3zig + νig,

where zig denotes those observable characteristics that influence i’s evalua-
tion of group g but are not direct determinants of ωi and νig denotes an unob-
servable individual-specific group quality term. Individual i chooses the group
with the highest I∗ig. We assume that prior to group formation, for all i and g,
E(εi|xi, yg, zig) = 0 and E(νig|xi, yg, zig) = 0.

From this vantage point, the violation of equation (8) amounts to

E(εi|xi, x̄1, y1, zi1, . . . , x̄G, yG, ziG, i ∈ g) , 0. (36)

Notice that equation (36) includes the characteristics of all groups. This condi-
tioning reflects the fact that the choice of group depends on characteristics of

24The idea that full consideration of the informational contents of choices can be exploited
to overcome issues of unobservable heterogeneity and generate identification appears in
other contexts. In Heckman and Honoré (1990), identification of the skill distribution in a
population depends on cross market variation in skill premia, which bears a strong analogy to
our use of cross-group variation in selection corrections.
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the groups that were not chosen in addition to the characteristics of the group
that was chosen. Equation (36) suggests that the linear in means model, un-
der self-selection, should be written as

ωig = cxi + dyg + Jmg + E(εi|xi, x̄1, y1, zi1, . . . , x̄G, yG, ziG, i ∈ g) +ξi. (37)

where by construction E(ξi|xi, x̄1, y1, zi1, . . . , x̄G, yG, ziG, i ∈ g) = 0. Notice that
the conditioning in (36) includes the characteristics of all groups in the choice
set. This is natural since the characteristics of those groups not chosen are
informative about the errors.

Eqs. (36) and (37) illustrate Heckman’s (1979) insight that in the pres-
ence of self-selection on unobservables, the regression residual εi no longer
has a conditional mean of zero, yet (37) can be consistently estimated using
ordinary least squares if one adds a term to the original linear in means model
(6) that is proportional to the conditional expectation on the left hand side of
(36), i.e., prior to estimation. Denote this estimate as︷                                                ︸︸                                                ︷

κE(εi|xi, x̄1, y1, zi1, . . . , x̄G, yG, ziG, i ∈ g) . (38)

Heckman’s fundamental insight was that one can construct such a term by
explicitly modeling the choice of group. From this perspective, controlling for
self-selection amounts to estimating

ωig = cxi + dyg + Jmg + ρ
︷                                                ︸︸                                                ︷
κE(εi|xi, x̄1, y1, zi1, . . . , x̄G, yG, ziG, i ∈ g) +ξi. (39)

Thus, accounting for self-selection necessitates considering identification for
this regression, as opposed to (6).

The property of interest for the identification of social interactions is that
the addition of the term (39) can help facilitate identification. To see this, con-
sider two possible reasons why agents choose particular groups. First, agents
may choose groups on the basis of the expected average behaviors that oc-
cur. For example a family chooses a neighborhood based on its expectation
of the average test score among students in the school their child will attend.
In the extreme case where this is the only neighborhood factor that matters to
families, the conditional expectation associated with the selection correction
will be a function of the agent’s characteristics and the expected outcomes in
each of the neighborhoods, i.e.

E(εi|xi, x̄1, y1, zi1, . . . , x̄G, yG, ziG, i ∈ g) = $(xi, m1, . . . , mG) (40)
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By the same logic that rendered the partial linear model (15) identified, (40) is
also identified as mg cannot, outside of nongeneric cases, be linearly depen-
dent on a constant term and yg.

Second, parents may choose neighborhoods based on the mean in-
comes of families or some measure of the distribution of occupations among
neighborhood adults. This can be justified on role model grounds. If neighbor-
hoods are evaluated according to their contextual variables, then (38) functions
as an additional individual-specific regressor whose group level average does
not appear in (37). Hence, following the argument about identification in linear
in means models that was developed earlier, the presence of a regressor with
a nonzero coefficient can allow for identification to occur. This route to identi-
fication has been successfully used in Ioannides and Zabel (2008) to identify
social interactions in housing. See Ioannides (this volume) for more detail on
that study.

One limitation of the work that has been done on identification using se-
lection corrections is that it has employed parametric corrections. Brock and
Durlauf (2002, 2006), for example, work with Lee’s (1983) correction which as-
sumes joint normality of εi and νig, while Ioannides and Zabel (2008) work with
joint extreme value distributions, following Dubin and McFadden (1984). From
the perspective of econometric theory, selection corrections are now concep-
tualized as examples of control functions, i.e. functions which augment models
in order to account for endogeneity as well as self-selection. Navarro’s (2008)
survey highlights advances made in the nonparametric construction of control
functions. This suggests that the argument we have made about the ability of
self-selection to facilitate identification of social interactions can move beyond
parametric assumptions, although this has not yet been done. We believe
this is feasible given the parametric structure, i.e. the partial linearity of the
outcome equation under self-selection.

vi. social interactions via unobserved variables

Our discussion of the linear in means model has assumed that the variables
through which social interactions operate either are directly observable or rep-
resent rational expectations forecasts of observable (to the analyst) variables.
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Recent work by Arcidiacono, Foster, Goodpaster, and Kinsler (2009) consid-
ers this possibility in a panel context, which is applied to classrooms at the
University of Maryland, where grades are the outcome measure. Translating
their model into our notation, they analyze

ωigt = cxi + dx̄gt + eui + f ūgt + εit (41)

where ygt = x̄gt is assumed. Endogenous social interactions are ruled out a
priori. The key innovation in Arcidiacono et al. is that the individual variable ui
and associated group variables ūgt are both unobservable. Notice that xi and
ui are time invariant whereas ūgt and x̄gt are time dependent. The time de-
pendence of the latter terms occurs because group memberships can change
over time.

The identification of social interactions for this problem thus hinges
upon overcoming unobservability of the contextual interactions ūgt. In order
to achieve identification, Arcidiacono et al. restrict the coefficients in (41) by
assuming the existence of a scalar γ such that

e = γc; f = γd.

This assumption follows Altonji, Huang, and Taber (2005). In the spirit of si-
multaneous equations theory this is analogous to a coefficient restriction that
facilitates identification. This assumption fixes the ratios of the coefficients of
observed individual characteristics to equal those of the corresponding peer
characteristics. Arcidiacono et al. describe this (pg. 6) as rendering the two
dimensions of peer effects versus the two dimensions of individual effects
“equally important”. This is an ill-defined claim. The Arcidiacono et al. strategy
is better thought of as a restriction on coefficients that, in the classical simulta-
neous equations sense, may help with identification and its justification should
be assessed from the perspective of whether the restriction can be justified by
economic theory or by some other argument.

Arcidiacano et al. proceed by focusing on a general notion of fixed ef-
fects for each individual, defining these fixed effects the determinants of out-
comes (outside the errors εit) as

κi = cxi + eui.

Letting κ̄gt =
1

ngt

∑
i∈g κigt, eq. (41) can be re-expressed as

ωig = κi + γκ̄gt + εit.
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From this perspective, Arcidiacono et al. frame the identification problem for
social interactions as the problem of consistently estimating γ in the presence
of a large number of fixed interactions. Their theorem 1 locates a set of suffi-
cient conditions so that a consistent and asymptotically normal estimator of γ
may be found. Identification is implicit in this proof. We do not repeat their as-
sumptions here but note that the essential substantive economic requirements
are 1) the composition of an individual’s peer groups change over time and 2)
∀i, j, t, E(εitκ j) = 0. The first condition is needed since identification requires
individuals to be exposed to different peers to allow for distinguishing the influ-
ence of the fixed effects of others on a given individual. The second condition
delimits the nature of self-selection into classrooms. Although Arcidiacono et
al. argue that they allow for self-selection based on the ability of peers, this
second condition appears to limit how selection can occur. This criticism does
not detract from the value of their contribution, but points to an instance of
the general proposition that explicit modeling of selection is essential in under-
standing identification conditions.

Cooley (2009) explores an even more extreme form of unobservability
in which both the determinants and outcomes of behaviors are not observed.
Motivated by the issue of classroom peer interactions, she argues that, from
the vantage point of theory, the causal sources of peer interactions between
students in a classroom involve the effort levels of other students, which is an
endogenous effect and ability, which is a contextual effect. Neither of these
is directly observable. Empirical work on classroom peer interactions typi-
cally uses observable classroom achievement as the outcome measure and
various ad hoc (albeit theoretically plausible) choices of observable student
characteristics for contextual efforts. For Cooley, what is critical is that effort
is the choice variable, not classroom performance per se, which will reflect
unobservable effort and ability as well as residual unobserved heterogeneity.
Cooley calculates the optimal choice of effort by students and uses this equi-
librium condition to produce a reduced form model which links the observable
outcome classroom performance to the observable individual and contextual
interactions. The coefficients in this latter equation prove to be uninterpretable.
For example, an observable contextual effect whose structural coefficient is
positive can have a reduced form coefficient that is negative. The formulas
linking the structural and reduced form parameters are extremely complicated,
so are omitted here.
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A third approach to unobservability is developed in Solon, Page, and
Duncan (2000) and further studied in Page and Solon (2003a,b). This anal-
ysis assumes that one cannot observe any of the determinants of individual
outcomes; only the outcome data are available. Unlike work such as Gra-
ham (2008), no assumption is made that social interactions are endogenous
rather than contextual. Rather, it is assumed that individuals are influenced
by family-level, group-level, and idiosyncratic influences. Individuals are dis-
tinguished by family and group (in this case residential neighborhood). A vari-
ance decomposition for individual outcomes is constructed to bound the con-
tribution of group effects to variance of individual outcomes. The analysis may
be understood in terms of a variance components model (Searle, Casella, and
McCulloch, 2006, p. 14):

ωig = µ f + νg + o f g + εi . (42)

In (42), µ f denotes a family effect, νg denotes a group effect, o f g denotes an
interactive effect between family and group, and εi denotes an idiosyncratic
effect. A decomposition of this type always exists in which the components
are orthogonal. In terms of mapping this expression back to a measure of the
role of group influences, one difficulty lies with o f g. Does the covariation be-
tween family and group represent a group effect or self-selection? Solon, Page
and Duncan address this issue by comparing intra-family (sibling) and group
(in their case residential neighborhood) variances to bound the variance of
νg, finding the variance contribution is small. Oreopoulos (2003) finds similar
results, focusing on a data set which involves adults who, as children, were
randomly assigned to different public housing projects, thereby presumably
eliminating o f g. He finds a small role for νg and so concludes that neighbor-
hood effects do not play a major role in explaining the variance of various adult
outcomes.

One limitation of this approach is that it reduces the vector of social in-
teractions to a scalar so that one cannot tell which social factors matter. In fact,
it is possible for different social factors to cancel each other out. And to the ex-
tent that unobserved group effects νg do not represent social interactions, as
was the case for our example of teacher quality and classroom outcomes, it is
not clear that a large variance contribution from νg has a social interactions in-
terpretation. These caveats do not render such exercises uninteresting; rather
they illustrate how economically substantive assumptions matter in producing
economically substantive interpretations.
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vii. social multipliers and information from aggregated data.

We close this section on the linear in means model by turning to how the
relationship between individual and aggregated data may provide evidence
of social interactions when individual actions are generated by the linear in
means model. The relationship between individual and aggregated data is
studied in Glaeser and Scheinkman (2002) and applied by Glaeser, Sacer-
dote, and Scheinkman (2003). The essential idea behind their analysis is that
endogenous social interactions can generate social multipliers in the sense
that a change in private incentives for every agent in a population will have an
equilibrium effect that is greater than the direct effect of the incentive change
on each individual because the changes in the behavior of others create addi-
tional effects on that individual. This difference is evident in the reduced form
(11) since xi and x̄g have different coefficients. Focusing on a scalar case
(extension to vectors is straightforward but algebraically tedious), Glaeser and
Scheinkman (2002) propose comparing the coefficient b in the regression

ωig = a + bxi + εi

with the coefficient b′ in its group counterpart

ω̄g = a′ + b′ x̄g + ε̄g, (43)

and define the social multiplier as the coefficient ratio:

S =
b′

b
.

In the context of the linear in means model, it is straightforward to compute
this ratio. Our calculations differ from Glaeser and Scheinkman as we focus
on the difference in the regressions as a misspecification problem. To make
this calculation, notice that for the Glaeser and Scheinkman case, the reduced
form (11) becomes:

ωig =
k

1 − J
+ cxi +

cJ
1 − J

x̄g + εi. (44)

Comparing (44) and (43), it is evident that the population value of b is readily
calculated using the standard omitted variables formula that b = c + cJ

1−Jβ
where β is implicitly defined by proj(x̄g|1, xi) = κ+ βxi, i.e. β = cov(xi, x̄g)/
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var(xi). In contrast, it is evident from taking expected values on both sides of
(44) that b′ = c

1−J which means the social multiplier is

S =
1

1 − J + Jβ
. (45)

Notice that if there is perfect segregation across groups, so that incomes
within a group are identical, then cov(xi, x̄g) = var(xi), which implies that
S = 1 whereas under random assignment, cov(xi, x̄g) = 0, which implies
S = 1

1−J . The latter value of S takes a form that echoes the classic Keynsian
income/expenditure multiplier, with the marginal propensity of consumption re-
placing J. Moreover, in the Bayesian game described in appendix 1, which lays
out the underlying decision-theoretic framework of the linear in means model,
S = (1 + φ)/(1 + φβ) where φ measures the marginal rate of substitution
between conformity and the private value of the choice variable. Note the sur-
prising fact that, as the pressure to conform increases, the social multiplier
may either decrease or increase, depending upon whether β exceeds or is ex-
ceeded by 1. Both are possible since we have not specified how individuals
are sampled across groups. For example, if there is systematic sampling ofxi
values below x̄g in each group, then β > 1 may occur. The dependence of the
social multiplier upon β makes it difficult to interpret.

As articulated in this example, the social multiplier provides a different
perspective on the effects of endogenous social interactions on changes in
private incentives. In terms of identification, it may also be of value. Clearly
the social multiplier calculations have little to add if complete individual level
data are available across the various groups of interest. On the other hand,
suppose that aggregate data are incomplete; i.e. one knows about outcomes
in a subset of classrooms in a school. One can imagine identification of J via
analogs to (45) that compare different levels of aggregation and thus exploit
variation in β to uncover J. Alternatively, one can imagine partial identifica-
tion approaches that exploit the fact that different β’s reflect different levels of
aggregation with respect to the same underlying population.
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4 Social networks and spatial models of social
interactions

In defining social interactions thus far we have presumed that interactions are
generated by group-specific averages. Social network models provide further
focus on the microstructure of interactions among agents and allow for hetero-
geneity of interactions across pairs of agents. Jackson (2008) provides a thor-
ough overview of the new social networks literature. In this section we address
the identification of social interactions in social networks. In addition, we dis-
cuss the use of spatial econometrics models to study social interactions. The
social networks and spatial analysis approaches are mathematically very sim-
ilar, and yet, they have been until recently developed independently from one
another. This similarity is not surprising as spatial econometrics approaches
deal with physical space, whereas social networks address a more abstract
social space, yet still a space with well posed notions of distance and the like.

i. graphical models of social networks

Before extending the model of social interactions to social networks it is use-
ful to establish some basic terminology. For this setting, social interactions
among individuals are defined by means of a social structure (or topology, the
two terms are used interchangeably in the literature and here) that takes the
form of a network, whose mathematical description is a graph with the vertices
representing individuals and edges representing links between them. Network
vertices and population members are thus identical concepts. What is of in-
terest is the network structure that links agents. Network structure among
individuals is modeled either as an undirected or a directed graph. Here we
shall focus on the latter case, since it allows us to express a richer set of social
relations.

Directed graphs consist of vertices (also known as nodes) and directed
edges. A directed edge is an ordered pair (i, j) of vertices. A directed graph
is a pair (V , E) where V is the set of nodes, with cardinality nV , and E is the
set of edges. A subgraph (V′, E′) of (V , E) is a graph where V′ is a subset
of V and E′ is a subset of E. A subgraph (V′, E′) is induced by (V , E) if and
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only if E′ contains all edges of E which begin and end in V′. A social network
is a graph (V , E) where V is the set of individuals and the directed edges in E
signify social influence: (i, j) is in E if and only if j influences i.

A social network can be represented by its adjacency matrix A, also
known as its sociomatrix in the mathematical sociology literature. An adja-
cency matrix is an nV × nV matrix, with one row and one column for each
individual in V. For each pair of individuals i and j, ai j = 1 if there is an edge
from i to j, and 0 otherwise. Since the network is supposed to represent social
connections, it is natural to assume that no i is connected to himself. That is,
for all i, aii = 0. A path from i to j is a sequence of individuals i0, . . . , iK such
that i0 = i, iK = j, and for all k = 1, . . . , K − 1, there is an edge from ik−1 to
ik. Such a path is said to have length K. If there is a path from i to j of length
exceeding 1, then i indirectly influences j. The adjacency matrix A displays
all paths of length 1. The K-fold product AK counts all paths of length K; if
the i j’th element of AK is n, then there are n paths of length K from i to j. A
subgraph (W, F) of (V , E) is strongly connected if and only if for any i and j in
W there is a path from i to j consisting solely of edges in F. A subgraph which
is strongly connected and is a subgraph of no larger such graph is a strongly
connected component of (V , E).25 A graph (V , E) is strongly connected if and
only if some power of its adjacency matrix is strictly positive. The literature
also contains the less restrictive requirement of weak connectivity. Intuitively,
it is the notion of connectivity that emerges when one can walk links in any
direction. By suitably ordering the vertices, the adjacency matrix of a graph
(V , E) can be written as a block-diagonal matrix where the rows (columns) of
each block correspond to a weakly connected component.26 A graph (V , E)
is complete if for each pair i and j in V there is an edge from i to j. A graph
is oriented if the existence of an edge from i to j implies that there is no edge
from j back to i.

While social influence can be a one-way relationship, we usually think
of some relationships, for example friendship, as being bidirectional and the
social network is represented by an undirected graph, and the adjacency ma-

25Note that a strongly connected component can have links into it from outside the compo-
nent, and links to the outside. But no other node is on a path from the component and a path
to the component.

26Weak connectivity is connectivity assuming that all edges can be traversed in any direc-
tion.
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trix is symmetric. Edges are now undirected, and so there is a path from i to j
if and only if there is a path from j to i. A subgraph (V′, E′) of the undirected
graph (V , E) is connected if and only if between any two nodes i and j in V′

there is a path in (V′, E′) between them. A component of the graph (V , E) is,
as before, a subgraph which is connected and maximal with respect to inclu-
sion. The distance between any two nodes is the length of the shortest path
between them.

Some particular network topologies are important in the social net-
works literature. A star network is an undirected graph in which one individual,
the center, is connected to all other individuals while all other individuals are
connected only to the center. A group, also known as a complete network,
is one that contains an edge between each two of its vertices. Its adjacency
matrix is all 1s. In a bipartite graph, the vertex set V is the union of two disjoint
sets T and U, and all edges are between members of T and members of U,
i.e. edges represent matches between vertices in the two sets. We will call a
bipartite graph directed if for all (i, j) ∈ E, i ∈ T and j ∈ U.

Sociologists allege that social relations like friendship exhibit the prop-
erty of homophily — loosely but accurately described by the phrase “the friend
of my friend is my friend, too.” This property is described by the prevalence
of transitive triads. Triads are connected subgraphs consisting of three nodes.
Transitivity is the property that the existence of an edge from node i to j and
an edge from j to k implies the existence of an edge from i to k. A graph
is transitive if it contains no intransitive triads. The linear in means model is
specified by assuming A is symmetric, that edges are bidirectional, and that
the graph is transitive. If this is true, then the graph is the union of completely
connected components. The nodes of the component containing i constitute
i’s group.

While the linear in means model is a good starting point for the study
of social interactions, social networks allow for a much richer specification of
social relations. The model can be enriched still further by allowing the ele-
ments of adjacency matrices to be arbitrary real numbers. In such models, the
magnitude of the number ai j measures the degree of influence j has on i, and
the sign expresses whether that influence is positive or negative. Throughout
this section we will assume that all elements ai j are non-negative except as
noted, and that that contextual variables are weighted averages of the indi-
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vidual characteristics. This generalizes the contextual effects in the linear in
means model case in which yg = x̄g.

Note that in this section, we defined choices as ωi. No additional sub-
script is employed to denote a person’s social environment. The reason for
this is that the networks literature focuses on members of a common popu-
lation and introduces social structure for the population as a whole via the
matrix A.

ii. identification in social networks: basic results

Cohen-Cole (2006) appears to be the first analysis of the linear in means
model under richer interactions structures. That is, he posits that an indi-
vidual reacts to multiple reference groups, such as a teenage boy might care
differently about what other teenage boys do than about what teenage girls
do. He shows that the model with agents’ beliefs about actions in multiple
other groups as well as observables for each group can be fully identified pro-
vided that there are more observed linearly independent group level effects
than there are groups in the sample and that there is some pair of groups for
which agents in one group care about the actions in the other. This type of rea-
soning is extended in an analysis by De Giorgi, Pellizari, and Redaelli (2010)
of peer effects in the choice of college education. From the econometric per-
spective, Bramoullé, Djebbari, and Fortin (2009), Lee, Liu, and Lin (2010) and
Lin (forthcoming) constitute the most systematic explorations of social inter-
actions in social and spatial contexts respectively, but there are several other
contributions which we will discuss below.

The current identification literature for networks assumes A is known a
priori to the researcher. This is a critical assumption in the existing literature
which restricts empirical work to contexts in which survey data, for example,
can be used to measure network structure. As far as we know, no econometric
methods have been developed to consider social interaction inferences in the
presence of unknown network structure. We note that some work has focused
on data sets in which a random sample is drawn from a set of networks. We
ignore the distinction between possessing the data on the whole population
versus a random sample as it is not germane to the identification issues on
which we focus.
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The network model employed by Bramoullé et al. assumes that each
individual i is influenced by the average behavior of a set of peers P(i) and
that, like Moffitt (2001) but unlike Manski (1993), individual i is not his own
peer. The peer relationship is not assumed to be symmetric, so the social net-
work is represented by a directed graph. The social interactions are described
by a weighted adjacency matrix:

ai j =

 1
|P(i)| if j ∈ P(i),

0 otherwise.
(46)

Individual outcomes are then described by the behavioral equation system

ωi = k + cxi + d
∑
j,i

ai jx j + J
∑

j

ai jω j + εi (47)

with the error restriction

E(εi|(xi)i∈V , A) = 0 . (48)

The reduced form for this system may be described in vector notation as

ω = k(I − JA)−1ι+ (I − JA)−1(cI + dA)x + (I − JA)−1ε (49)

where I refers to the nV × nV identity matrix and ι is a nV × 1 vector of 1’s.
(Recall that nV is the number of individuals in the network.) Bramoullé et al.
focus on identification by studying this reduced form. Recognizing, as did
Moffitt (2001), that systems of this type are examples of linear simultaneous
equations models in which one can think of the outcomes for the members
of the overall network as the endogenous variables and the individual effects
as the exogenous variables.27 The important insight of Bramoullé et al. is
that the ideas concerning the averages of behaviors and characteristics of
groups carry over into more general social-network settings. Bramoullé et al.
provide a fundamental algebraic result with respect to identification of models
like equations (47) and (48), which does not rely on the constraint (46). The
theorem assumes that J can take values in an arbitrary parameter set J in R.

Theorem 2. Identification of social interactions in linear network models.
For the social interactions model described by eqs. (47), and (48), assume
that Jc + d , 0 and that for all values of J ∈ J , (I − JA)−1 exists.

27If yg were included in the system, this vector would also represent a set of exogenous
variables.
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i. If the matrices I, A, and A2 are linearly independent, then the parame-
ters k, c, d and J are identified.

ii. If the matrices I, A, and A2 are linearly dependent, if for all i and j,∑
l ail =

∑
l a jl, and if A has no row in which all entries are 0 or k = 0,

then parameters k, c, d and J are not identified.
The condition that Jc+ d , 0 requires, in the network setting, that endogenous
and contextual effects do not cancel out in the reduced form. Theorem 2.i is a
purely algebraic result. This is to say, it does not rely on the specific structure
of A which arises from its network context. It applies to any linear system of
the form (47) for which |J| · ||A|| < 1 for all possible parameter values J. An
interesting feature of this result is that it does not rely on exclusion restrictions.
This should not be surprising. Although the number of equations in the system
is nV , the size of the population, there are only four parameters to estimate.
There are thus many cross-equation and within-equation linear equality con-
straints: The independence condition describes when these constraints satisfy
the appropriate rank condition. Theorem 2.ii identifies an important case for
which linear independence of I , A and A2 is necessary as well as sufficient
for identification. The requirements on A mean that each individual averages
in some way over those who influence him, and that no one is isolated. The
result can be thought of as a converse to theorem 2.i.

The analysis of group interaction is the leading case in the econometric
literature on networks. It is also appealing from the perspective of existing
data sets such as the National Longitudinal Study of Adolescent Health (Add
Health).28 Suppose that the peer relation is symmetric, j ∈ P(i) if and only
if i ∈ P( j). Suppose too that the peer relation is transitive: If j ∈ P(i) and
k ∈ P( j), then k ∈ P(i). As discussed in section 4.i, the graph is the union
of a finite number G of completely connected components, that is, groups.
Suppose that component g has ng members. We will consider two ways to
average over the group: Exclusive averaging excludes i from P(i). In this

28The Add Health data set is the outcome of a longitudinal data collection exercise de-
signed to facilitate study of health-related behaviors of adolescents in grades 7 through 12.
The data set includes information, for example, on the structure of adolescent friendships via
responses to questions on the identities of best friends. As such, directions of friendships are
revealed but not intensity. See http://www.cpc.unc.edu/projects/addhealth for details.
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case, for i ∈ g,

ai j =

 1
ng−1 if j , i and j ∈ g,

0 otherwise.

Inclusive averaging includes i in P(i). In this case, for i ∈ g,

ai j =

 1
ng

for all j ∈ g,

0 otherwise.

With inclusive averaging, equations (47) and (48) are equivalent to our
linear in means model, except that realized rather than expected outcomes af-
fect individual outcomes. This difference is inessential since the instrumental
variable projections used to replace the endogenous choices of others coin-
cide with equilibrium formulations of beliefs.29 Means and realizations, how-
ever, represent two distinct theoretical models. The first is a network version
of the incomplete-information game developed in appendix 1. The second is
a complete-information version of the same game. With exclusive averaging,
the subject of Bramoullé et al., an additional distinction is that the calculation
of group-level contextual effects does not include i’s own individual character-
istics. This distinction is inessential in that the identification results for the two
models are nearly the same. The following result is a corollary of the forth-
coming theorem 3:

Corollary 1. Identification of social interactions in group structures with
different-sized groups. Suppose that individuals act in groups, and that the
ai j are given by exclusive averaging. Assume that Jc + d , 0. Then the pa-
rameters k, c, d and J are identified if there are at least two groups of different
sizes.

The positive result of corollary 1 is similar to Graham’s (2008) variance
contrast identification strategy, but its source is different. Here identification fol-
lows the reduced form regression parameters rather than the second moments
of the average group outcomes.30 Note that in Graham’s case, Jc + d = 0

29As we will see, the distinction is important for binary choice models.
30Corollary 1 is a special case of Lee’s (2007) result, without fixed effects. Lee (2007)

studied the effects of group size on identification while also allowing for unobserved group
fixed effects. He establishes identification of both the endogenous and exogenous social



48

since c = d = 0, so his findings allow for identification when individual and
contextual effects are absent.

At first glance, this corollary might appear to contradict theorem 1 and
indeed call into question Manski’s nonidentification results on the linear in
means model, since neither involved groups sizes while the corollary links
groups sizes to identification. In fact, there is no contradiction. Theorem 1
and Manski’s earlier analysis did not treat social interactions in the linear in
means model as a simultaneous equations system that explicitly relates indi-
vidual choices to one another within a group. More generally, previous studies
of identification of the linear in means model have taken the effects of group
averages as the objects of interest, not the pairs of cross-individual effects.
In contrast, the linear in means model as appears in the econometrics litera-
ture is a large sample approximation to the solution of a particular Bayes/Nash
game, as shown in appendix 1.31 If one relaxes the approximation, then the
coefficients of the linear in means model as it applies to a given group depend
on the group’s size. When groups sizes differ, the coefficients of their associ-
ated linear in means representations differ. When coefficients from groups of
different sizes are combined, this allows one to uncover the parameters k, c, d
and J.

Powers of A describe the network topology. When we examine this in
detail, we find that for very few networks are parameter estimates not identified
in the reduced form. Bramoullé et al. provide an algebraic condition that is
necessary and sufficient for identification in a class of linear social interaction
models. We show that identification fails only when the network is the union of
groups. It is ironic that the importance of groups is due to their prevalence as a
common specification in econometric studies, for it is only with groups that the

interactions provided there are sufficient variations in group sizes, but under somewhat re-
stricted conditions relating group sizes to the total number of observations, and also provides
asymptotic estimation properties. Davezies, d’Haultfoeuille, and Foughre (2009) show that the
identification results hold under different conditions than Lee’s. For Davezies et al., identifica-
tion holds so long as 1) the sizes of groups do not depend on overall sample size, as in Lee
(2007), and 2) there exist at least three different group sizes. This avoids Lee’s requirements
that group sizes are linked to population size. Intuitively, this is possible because variations
in group sizes create variations in reduced form coefficients across groups. This variation is
evident from an example like that in Bramoullé, Djebbari, and Fortin (2009, p. 49), where the
reduced form coefficients depend on the size of the group to which an individual belongs.

31Compare equations (85) and (86) in appendix 1.
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identification issue even arises. We state and prove (in appendix 2) a variant
and unification of the Bramoullé et al. results.

Theorem 3. Nonidentification of social interactions in network models
under exclusive and inclusive averaging. Assume Jc + d , 0, k , 0, and
that for all values of J, (I − JA)−1 exists.

i. Under exclusive averaging, the parameters k, c, d and J are not iden-
tified in the reduced form (49) for the structural model (47) and (48) if
and only if the social network (V , E) is the union of weakly connected
components wherein each component is a group, and all groups are
the same size.

ii. Under inclusive averaging, the parameters k, c, d and J are not iden-
tified in the reduced form (49) for the structural model (47) and (48) if
and only if the social network (V , E) is the union of groups.

This theorem depends upon the particular weighting schemes used to average
across peers. It follows from the more general theorem 4, which is interesting
in its own right because it applies to any weighting scheme which puts positive
weight on all edges of E.32

Theorem 4. Nonidentification for weighted averaging implies network
transitivity. Let (V , E) be a network with weighted adjacency matrix A as de-
scribed by (46). Assume that Jc+ d , 0 and that for all values of J, (I − JA)−1

exists. If the parameters k, c, d and J are not identified, then (V , E) is transi-
tive. If the network is undirected, then (V , E) is the union of groups.

Finally, we note that all of this is based on the fundamental indepen-
dence criterion of theorem 2, which applies to any matrix A no matter what its
source, so long as it satisfies an algebraic criterion. From this general point of
view, it is clear that nonidentification of parameters in the reduced form is rare.
We suppose without loss of generality that the parameter J takes values [0, 1),
and denote by S the set of all matrices A such that (I − JA) is invertible. If the
matrices are nV × nV , S is a semi-algebraic set of full dimension in Rn2

V .33

32Bramoullé et al. discuss results of this type, but provide no general theorem like this.
33A semi-algebraic set is a set which can be described as the solutions to a finite number

of polynomial inequalities. The set of nV × nV matrices such that for all J, (I − JA)−1 exists is
a semi-algebraic set in Rn2

V . Semi-algebraic functions are functions whose graphs are semi-
algebraic sets. Every semi-algebraic set is the union of a finite number of disjoint open C∞
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Theorem 5. Generic identifiability of the linear social networks model.
The set of all matrices A ∈ S such that the powers I, A and A2 are linearly
dependent, is a closed and lower-dimensional (semi-algebraic) subset of S .

This theorem is a complement to McManus’ (1992) result on the generic iden-
tifiability of nonlinear parametric models. For the social networks context, the
key intuition for generic identifiability is that since A is assumed to be known a
priori, this knowledge is the equivalent of a large number of coefficient restric-
tions on the coefficients in the reduced form representation of individual be-
haviors. These restrictions are rich enough that, outside of nongeneric cases,
they permit identification of k, c, d and J.

iii. unobserved component-specific fixed effects

The analog to group-level unobservables in the linear in means model in net-
works is component-level unobservables. If individual outcomes contain unob-
servables that are correlated among individuals belonging to the same com-
ponent they may be treated as fixed effects in the stochastic structure of (47),
producing

ωi = k + cxi + d
∑
j,i

ai jx j + J
∑

j

ai jω j + αg + εi (50)

with error structure

E(εi|αg, (xi)i∈g, A) = 0 (51)

where αg is a component-specific fixed effect. This can be thought of as a
model of interacting in groups, in which the groups themselves have internal
social structure.

Little work has been done on this problem. We know of only the identi-
fication results of Bramoullé, Djebbari, and Fortin (2009). Since their model is
linear, component-specific fixed effects can be differenced away.34 In principle,

manifolds. The dimension of a semi-algebraic set is the largest of the dimensions of these
manifolds. For more on semi-algebraic geometry see Bochnak, Coste, and Roy (1998).

34Bramoullé, Djebbari, and Fortin (2009) refer to these fixed-effects as “network-specific”.
“Component-specific” is a more precise description.
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this differencing can be done in many different ways, of which Bramoullé et al.
discuss two. “Local differencing” subtracts from each individual’s behavioral
equation the average of those who directly influence him. “Global differenc-
ing” subtracts from each individual’s behavioral equation the average of those
in the connected component to which the individual belongs. A third differ-
encing strategy not yet studied is to subtract from each individual’s behavioral
equation the average of those to whom he is indirectly connected. Differenc-
ing entails loss of information, and so conditions for identification are stronger.
But here too identification is determined by the network topology. In particular,
Bramoullé et al. prove the following theorem:

Theorem 6. Identification of social interactions in linear network mod-
els with component-specific fixed effects. For the social interactions model
described by equations (46), (50) and (51), assume that Jc + d , 0. With
local differencing, a necessary and sufficient condition for identification of the
parameters k, c, d and J is that the matrices I, A, A2 and A3 are linearly inde-
pendent.

Identification with global differencing is marginally simpler. Bramoullé
et al. show that the independence condition of theorem 6 is sufficient but not
necessary, and offer some weaker necessary and (distinct) sufficient condi-
tions.

An unfortunate necessary assumption for their analysis is the condition-
ing in the expectation of the error term. We would expect models like (48) to be
most interesting for those situations where network formation is endogenous,
but the expectation assumption rules out any model wherein unobservable in-
dividual characteristics affect both network relations and individual behaviors.

iv. self-selection in social network models

Investigating self-selection in social network models requires modelling the co-
evolution of networks and behavior. Although the growth of networks has been
studied empirically, and evidently behavior on networks is a well-established
subject, the joint evolution of both has rarely been touched upon.35 In par-

35These issues have come up in the study of online commmunities. See Crandall, Cosley,
Huttenlocher, Kleinberg, and Suri (2008).
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ticular, the econometric issues posed by endogenous network formation are
briefly discussed by Jackson (2008, p. 437).36

Weinberg (2008) proposes a model which is interesting for its treatment
of a heirarchical and partially endogenous social structure. People belong to a
group, whose aggregate exogenous characteristics and endogenous choices
affect individual behavior, which is derived from a preference structure sim-
ilar to that of appendix 1. But in contrast to modeling of group choice as
discussed above in section 3.v and further pursued in section 5, Weinberg by-
passes the treatment of groups as discrete objects and assumes instead that
each group member can form a desired set of contextual effects by choos-
ing to actively interact with (in his language, associate with) a subset of the
group. In other words, he presumes that social structure arises from the direct
choices of desirable contextual (and endogenous social) interactions by each
individual rather than from the choice of group memberships from which social
interactions are experienced. The objective of this modeling assumption is to
allow for very general subgroups to form within predefined groups. For exam-
ple, one can imagine distinct friendship networks forming within a classroom.
This kind of model makes possible a rich set of identification strategies even
though it is basically a linear in means model because the possibility of en-
dogenous associations introduces non-linear relationships into the behavioral
equations. Weinberg identifies patterns of behavior that are not present when
association is exogenous. For instance, Weinberg’s model exhibits effects of
group size not present in the linear in means model because larger groups
offer more opportunities for reinforcement through association with likeminded
individuals. The possibility of association introduces non-linearities into the
magnification effects of social interaction. For instance, Weinberg’s model is
consistent with the finding (Angrist and Lang, 2004) that relocating individuals
at risk for certain behaviors or outcomes to less risky groups may have little
impact because the at-risk individuals may associate differentially with those
who engage in risky behavior.

For all of its virtues, Weinberg (2008) does not fit naturally into the
frameworks that have emerged in the social networks literature. Subgroup
selection is modeled crudely when compared to the body of social networks
structures that have been studied. The modelling strategy carefully avoids the

36See Bala and Goyal (2000) and Jackson and Wolinsky (1996) for notable contributions,
and Jackson (2008, ch. 6) for an extensive treatment of several other works.
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difficult issues of network topology and its effects on the diffusion of social
action. Nonetheless, the development of panel data sets such as Add Health
and those available from large online communities make spatial self-selection
a topic of increasing importance.

v. spatial econometrics specifications of social interactions

A close relationship exists between social interactions and spatial economet-
rics models. Equation (47) implies the classic Cliff-Ord spatial autoregressive
(SAR) model with one spatial lag, as the special case of d = 0 where the
dimension of endogenous outcomes is equal to the number of spatial units.
These can be states, counties, parcels of land, etc. When instead of spa-
tial units, the model refers to individuals, one has a social interactions model.
The social interactions literature has recently sought to exploit the relation-
ship. See Lee (2007), who explored this link formally, and Lee, Liu, and Lin
(2010).37 In addition, the spatial econometrics literature has made important
advances in terms of allowing for spatial autocorrelation in error structures:
see Kapoor, Kelejian, and Prucha (2007) and Kelejian and Prucha (2010) for
recent examples of advances in the study of spatial environments under weak
error assumptions and Anselin (2010) for a review of the area. Spatial econo-
metrics models have a long tradition in geography where the weights attached
to different observations are motivated in terms of various distance concepts.
For example, if the units of observations are counties, one may wish to account
not only for adjacency but also for distance between their main population cen-
ters. Adding contextual effects, as in Lee (2007), brings the model closer to
standard social interactions models.

An interesting predecessor to the new spatial econometric approaches
to social interactions is Topa (2001). Topa’s focus is on the exchange of in-
formation about labor market opportunities. He draws upon spatial epidemio-
logical models in his study of job search. Unemployed individuals learn about
job opportunities from, and employed individuals pass on job opportunities to,

37Boucher, Bramoullé, Djebbari, and Fortin (2010) estimate the full Lee (2007) model
with group-level unobservables using data on student achievement from Quebec secondary
schools and find evidence of endogenous peer effects while also controlling for contextual
effects and group unobservables in the form of fixed effects.
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their immediate neighbors. Employed individuals become unemployed at an
exogenously given rate, while unemployed individuals become employed at a
rate proportional to the number of their employed neighbors. In its simplest
form, this is a contact process, a network version of the basic SIR (suscepti-
bles, infectives, and removables) model of disease spread.38 While the model
Topa estimates is somewhat different, it shares two important features: corre-
lations across sites are positive, and they diminish geometrically with distance.
Vertices in the network are census tracts in Chicago, and the dependent vari-
able is the tract unemployment rate, which is modeled to move in a manner
which is a metaphor for the aggregation of the contact process over individu-
als in each tract. The model is a first-order Markov chain. A state of the chain
is an unemployment rate for each census tract. The transition probability is
described by specifying a probability distribution for each tract i, conditioned
on the current unemployment of tract i and its exogenous characteristics (edu-
cation levels, ethnic composition and the like), and the current unemployment
rate of its neighbors.

Topa does not have time series data, and so his estimation strategy is
to fit the invariant distribution. Since the likelihood function is intractable, he es-
timates the model by indirect inference with an SAR auxiliary model. In short,
he estimates the auxiliary model with the realized data. He then simulates
the structural model for different parameter values, and estimates the auxiliary
model with these simulated data sets. The indirect inference estimate is the
set of parameter values which minimize a distance between the simulated-data
and real-data parameter estimates of the auxiliary model. Point identification
in the structural model is likely, but difficult to establish since the likelihood
function is not directly accessible. Observed spatial correlation may be due
to endogenous spillovers, social interactions, or to spatial correlation in the
neighborhood characteristics. Topa asserts that the non-linear nature of the
model makes identification likely. We have already shown cases where nonlin-
earity facilitates identification in our discussion of the nonlinear in means and
hierarchical models, and will see other cases below, so the assertion seems
plausible. If the model were linear, arguments like those of Bramoullé, Djeb-
bari, and Fortin (2009) would apply. Assuming that the structural model is
identified, the indirect inference estimator identifies the parameters if the min-
imum distance estimate is unique and if the map from structural parameters

38See Daley and Gani (1999) for a good exposition of the SIR model.
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to parameters for the auxiliary model is one to one, and is locally onto the
range of auxiliary parameter values in a neighborhood of the image of the true
structural parameter value. The latter condition amounts to a rank requirement
which Topa tests. Conley and Topa (2007) extend Topa (2001) by allowing for
the use of individual-level information in the analysis of a variant of Topa’s
structural model, using a combination of calibration and estimation rather than
indirect inference with an auxiliary equation. Together, Topa (2001) and Con-
ley and Topa (2007) raise and begin to address the very real problem of how
to assess identification when a structural model is not immediately accessible,
an area which needs much work.

Lee, Liu, and Lin (2010) is a significant advance in the econometrics
of social networks and spatial models. It generalizes Lee (2007) by allowing
for group unobservables and correlated disturbances of connected individuals.
Spatial autocorrelations in the error structure of their model are accounted for
by assuming that the vector of shocks for a given component l (comprised of nl
members), εl, consists of the sum of group-specific fixed effects and stochastic
components that satisfy

εl = ρA∗l εl + νl

where A∗ is an exogenous and non-stochastic nl × nl non-negative error-inter-
actions matrix that need not coincide with A.39 The parameter ρ is the spa-
tial autocorrelation coefficient, and νl is a nl-vector of i.i.d. individual-specific
shocks. This error specification may be thought of as a generalization of a
number of previous studies. Relative to Lee (2007), in which an individual in
a group interacts with all other group members with equal weights (and iden-
tification is ensured by different group sizes), Lee, Liu, and Lin (2010) allows
different individuals to have their own social groups, defined by the respective
social interactions matrices Al.

This model also extends the standard SAR model by allowing for con-
textual effects and group unobservables. These authors characterize the iden-
tification conditions of such an augmented SAR model based on features of
the network structure, the role of exogenous variables, and the presence of
correlated disturbances. Their results are broadly similar to those of Bramoullé
et al. Lee, Liu and Lin also include asymptotic and estimation issues. In par-
ticular, they propose a method of eliminating fixed effects that may be used

39In their analysis, nondiagonal entries are assumed to be symmetric and positive, but
diagonal entries are 0.
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with a general adjacency matrix for which simple averaging might not work.
They suggest a method which eliminates the fixed effects and allows the esti-
mation of the remaining parameters of interest via a quasi maximum likelihood
method that explores the row-normalization property of the social interactions
matrices. Lin (forthcoming) estimates a version of the Lee et al. model using
Add Health data with student academic achievement as the endogenous vari-
able and finds strong evidence for both endogenous and contextual effects,
even after controlling for school-grade fixed effects, and significant spatial au-
tocorrelation in the disturbances. The estimation results differ greatly with or
without school-grade fixed effects, which suggests that failure to correct for
correlated unobservables may produce severe bias. Such differences may
also be due to selection bias as well, in that individuals choose their peers.
Systematic econometric methods of accounting for self-selection bias in social
network formation are not yet available.

vi. from econometrics to applications

We end this section with two illustrations of how the types of models we have
discussed have been applied in empirical work. Calvó-Armengol, Patacchini,
and Zenou (2009) is a good illustration of how network methods have been
employed. Using the Add Health data set, these authors estimate individual
school performance as a function of the topology of their friendship networks,
while controlling for individual characteristics. Individuals’ friends always lie in
the same school as themselves. They estimate a restricted variant of equation
(47) in which J = 0. This model is generalized, however, by allowing the
unobserved individual-level heterogeneity to also be related to the structure of
the component level interactions. For each component l, the vector of errors
εl for members of component l obeys

εl = %Aι+ ρAεl + νl (52)

where A is the same adjacency matrix that links observable characteristics
across individuals, % measures the mean effect of the number of direct neigh-
bors for each individual (“best friends” according to the Add Health questions),
which is given by Aι, ρ denotes a spatial autocorrelation coefficient in the ε’s,
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and νl is again an nl-vector of i.i.d. individual-specific shocks.40 Since the er-
ror structure in (47), εl, represents individual outcomes that are not explained
by individual characteristics x and contextual effects Ax, these authors reason
that it proxies for peer interactions. Their estimation of the stochastic structure
subsumes social interactions into the estimation of (%, ρ) in (52), the former
because it controls for the number of best friends and the latter because it
reflects how each individual’s unobservable shock is affected by those of his
friends. These authors interpret (%, ρ) as expressing peer effects, which is
not a standard use of terminology. From the perspective of the distinctions
we have drawn between types of social interaction effects, % and ρ parame-
terize the strengths of different contextual effects since neither refers to direct
interdependences of choices per se.

Bayer, Ross, and Topa (2008) is a good example of how spatial rea-
soning can be used to identify social interactions. This paper develops a novel
strategy to identify and estimate local referral interactions in the labor market.
In order to identify labor market referrals from other spatially correlated inter-
actions, the authors estimate the propensity to work together (in the same city
block) for pairs of workers who reside in a given city block, controlling for the
baseline propensity to work together for residents in nearby blocks (which the
authors call a reference group of blocks).

The crucial identifying assumption here is that workers can choose res-
idential locations down to a group of blocks, but do not purposefully choose
among the individual blocks in the group because of block-specific charac-
teristics. Therefore, conditional on sorting at the group of blocks level, the
assignment of individuals to specific blocks is independent of block-specific
characteristics. The authors use this conditional independence to identify lo-
cal interactions with respect to labor market referrals. Specifically, let i and
j denote individuals who reside in the same Census block group but do not
belong to the same household. The outcome of interest is the binary variable
ωi j which indicates whether or not i and j work in the same Census block.41

Further, δb
i j is a dummy variable that equals 1 if i and j reside in the same

40ι is an nl × 1 vector of 1’s. For the Add Health data set, A is an adjacency matrix where a
1 means that at least i or j has designated the other as a best friend, so Aι is the number of
friends of each member of the component.

41Census blocks are measured for the Boston area using 1990 US Census data. As Bayer
et al remark, Census blocks approximate physical city blocks. This definition creates some
measurement questions since it means that two individuals who live opposite one another on
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Census block, xi j denotes a vector of socio-demographic characteristics for
the pair i, j, and ηg denotes a reference group fixed effect which serves as
the baseline probability of an employment match for individuals living in the
same block group. The proposition that block-level interactions occurs in labor
market referrals is defined via the regression

ωi j = βxi j + (α0 + α1xi j)δ
b
i j + ηg + εi j. (53)

The Bayer et al. test for the presence of social interactions due to proximity re-
duces to testing for the statistical significance of α0 and α1 in (53). The observ-
able pair covariates term βxi j controls for individual-specific reasons why two
individuals work on the same block and ηg controls for any unobserved hetero-
geneity that occurs at the block group level and affects employment location.
For example, ηg may be argued to control for features of the urban transporta-
tion network that might induce clustering in both residence and work location.
The empirical strategy of Bayer et al. addresses several additional potential
pitfalls, including possible sorting below the block level and the possibility of
reverse causation due to co-workers giving referrals on desirable residential
areas, and find large block-level social interactions effects on employment lo-
cation, especially among individuals who are socioeconomically similar.

These examples illustrate the need for a general method of testing
whether a particular specification is compatible with the data in the general
sense that the residuals do not contain evidence of omitted network structure.
A study by de Graaff, Florax, Nijkamp, and Reggiani (2002) suggests a general
specification test which could be applied to test whether the residuals, contain
“omitted structure” that could improve the predictive ability of estimated mod-
els. Their approach is rather abstract and is a test for the independence of
the residuals of a particular specification, whereas what one ideally wants is a
test for exchangeability of the residuals of a specification. It is still potentially
very useful as a first step towards testing for exchangeability of the residuals.
This is so because if the de Graaff et al. test of the null of independence is
passed by the residuals, then this evidence is consistent with exchangeability
of the residuals. Nevertheless, despite this caveat, the de Graaff et al. test is a
potentially useful specification testing tool in the area of social econometrics.
Furthermore, we believe that, in general, the econometric methodology from
spatial econometrics remains under exploited in social interactions economet-
rics. See Anselin (2010) for a very recent review of the subject.

given street are defined as living on different blocks.
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vii. social networks with unknown network structure42

All the results in this section so far have taken the social network matrix A as
known. This severely restricts the domain of applicability of existing identifi-
cation results on social networks. We finish this section by considering how
identification may proceed when this matrix is unknown. In order to do this,
we believe it is necessary to consider the full implications of the interpretation
of linear social interactions models as simultaneous equations systems. While
this interpretation is given in studies like Bramoullé et al., the full implications
of this equivalence have not been explored. This is evident if one observes
that the matrix form of the general social networks model may be written as

(I − JA)ω = (cI + dA)x + ε (54)

where for expositional purposes, the constant term is ignored. From this van-
tage point, it is evident that social networks models are special cases of the
general linear simultaneous equations system of the form

Γω = Bx + ε. (55)

Systems of this type, of course, are the focus of the classical identification in
econometrics, epitomized in Fisher (1966) and comprehensively summarized
in Hsiao (1983). One can go further and observe that the assumption that
the same network weights apply to both contextual and endogenous social
interactions is not well motivated by theory, and regard equation (55) as the
general specification of a linear social networks model where the normalization
Γii = 1 for all i is imposed. From this vantage point it is evident that the
distinction between J and A is of interest only when A is known a priori, as
is the case both for the linear in means model and the more general social
networks framework.

Following the classical literature, one can then think of the presence or
absence of identification in terms of whether particular sets of restrictions on
(55) produce identification. All previous results in this section are examples
of this perspective but rely on the very strong assumption of a particular way
of imposing these restrictions, i.e. Γ = I − JA and B = cI + dA for known A.
Note that the results we have described do not employ information on the

42This section was inspired by comments by Gary Becker and especially James Heckman.
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variance covariance matrix of the reduced form error structure, which is one
source of identifying information and the basis for Graham’s (2008) results.
The simultaneous equations perspective makes clear that the existing results
on identification in linear social networks models can be extended to much
richer frameworks. We consider two classes of models in which we interpret
all agents i = 1, . . . , nV as arrayed on a circle. We do this so that agents 1 and
nV are immediate neighbors of one another, thereby allowing us to work with
symmetric interaction structures.

First, assume that each agent only reacts to the average behaviors and
characteristics of his two nearest neighbors, but is unaffected by anyone else.
This is a linear variation of the model studied in Blume (1993). In terms of
the matrices Γ and B, one way to model this is to assume that, preserving
our earlier normalization, Γii = 1 and Γi i−1 = Γi i+1 = γ1 for all i, Γi j = 0
otherwise; Bii = b0, Bi i−1 = Bi i+1 = b1 for all i, and Bi j = 0 otherwise, where
here (and for the remainder of this discussion, all indices are mod nV ). The
model is identified under theorem 4 since the nearest neighbor model may be
interpreted via the original social networks model via restrictions on A. For
our purposes, what is of interest is that identification will still hold if one re-
laxes the symmetry assumptions so that Γi i−1 = γi−1, Γi i+1 = γi1, Bii = bi0,
Bi i−1 = bi−1 and Bi i+1 = bi1. If these coefficients are nonzero, then the ma-
trices Γ and B fulfill the classical rank conditions for identification, cf. Hsiao
(1983, theorem 3.3.1) and one does not need to invoke theorem 4 at all. No-
tice that it is not necessary for the interactions parameters to be the same
across agents in different positions in the network. Relative to Bramoullé et
al., what this example indicates is that prior knowledge of A can take the form
of the classical exclusion restrictions of simultaneous equations theory. From
the vantage point of the classical theory, there is no need to impose equal co-
efficients across interactions as those authors do. Imposition of assumptions
such as equal coefficients may be needed to account for aspects of the data,
e.g. an absence of repeated observations of individuals. But if so, then the
specification of the available data moments should be explicitly integrated into
the identification analysis, something which has yet to be done. Further, data
sets such as Add Health, which produce answers to binary questions concern-
ing friends, are best interpreted as providing 0 values for a general A matrix,
but nothing more in terms of substantive information.

This example may be extended as follows. Suppose that one is not
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sure whether or not the social network structure involves connections be-
tween agents that are displaced by 2 on the circle, i.e. one wishes to relax
the assumption that interactions between agents who are not nearest neigh-
bors are 0. In other words, we modify the example so that for all i, Γii = 1,
Γi i−1 = Γi i+1 = γ1, Γi i−2 = γi−2, Γi i+2 = γi 2, Γi j = 0 otherwise, Bii = bi0,
Bi i−1 = bi−1, Bi i+1 = bi1, Bi i−2 = bi−2, Bi i+2 = bi2, and Bi j = 0 otherwise. If
the nearest neighbor coefficients are nonzero, then by Hsiao’s theorem 3.3.1
the coefficients in this model are also identified regardless of the values of
the coefficients that link non-nearest neighbors. This is an example in which
aspects of the network structure are testable, so that relative to Bramoullé et
al. one does need to exactly know A in advance in order to estimate social
structure. The intuition is straightforward, the presence of overlapping net-
work structures between nearest neighbors renders the system overidentified:
so that the presence of some other forms of social network structure can be
evaluated relative to it. This form of argument seems important as it suggests
ways of uncovering social network structure when individual data are available,
and again has yet to be explored. Of course, not all social network structures
are identified for the same reason that without restrictions, the general linear
simultaneous equations model is unidentified. What our argument here sug-
gests is that there is much to do in terms of uncovering classes of identified
social networks models that are more general than those that have so far been
studied.

For a second example, we consider a variation of the model studied
by Bramoullé et al., which involves geometric weighting of all individuals ac-
cording to their distance; as before we drop the constant term for expositional
purposes. Specifically, we consider a social networks model

ωi = cxi + d
∑
j,i

ai j(γ)x j + J
∑
j,i

ai j(γ)ω j + εi.

The idea is that the weights assigned to the behaviors of others are functions
of an underlying parameter γ. In vector form, the model is

ω = cx + dA(γ)x + JA(γ)ω+ ε. (56)
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where

A(γ) =


0 γ γ2 · · · γk γk γk−1 · · · γ2 γ

γ 0 γ · · · γk γk γk−1 · · · γ2

...
γ γ2 · · · γ 0

 . (57)

Following Bramoullé et al., x is a scalar characteristic. The parameter space
for this model is P = {(c, d, J, γ) ∈ R2 ×R+ × [0, 1)}. The reduced form for this
model is

ω =
(
I − JA(γ)

)−1(
cI + dA(γ)

)
x+

(
I − JA(γ)

)−1
ε

Denote by F : P → Rn2
V the map

F(c, d, J, γ) = (I − JA(γ))−1
(
cI + dA(γ)

)
(58)

The function F characterizes the mapping of structural model parameters
(c, d, J, γ) to reduced form parameters. We will establish what Fisher (1959)
calls complete identifiability of the structural parameters from the regression
coefficients for the reduced form. By this he means that each reduced form
parameter vector is derived from only a finite number of structural parameter
vectors, i.e. that the map from structural models to reduced form models is
finite-to-one.

The behavioral model described by (56) is nonlinear in the parame-
ters because d, γ and J interact multiplicatively. This is nonetheless a natural
model, as it is the simplest way to discount individual effects by distance. The
following complete identification result holds for this model:

Theorem 7. Identification of the linear social networks model with weights
exponentially declining in distance. Suppose that the number of individuals
nV is at least 4. Then for all (c, d, J, γ) ∈ P,

i. if I − JA(γ) is non-singular, c + d , 0 and γ , 0, then the cardinality of
F−1

(
F(c, d, J, γ)

)
is no more than 2(nV − 1).

ii. The events J = d = 0 and γ = 0 are observationally equivalent. In this
case, F(c, d, J, γ) = cI.

Part i. of theorem 7 says the following: Each structural parameter vector is ob-
servationally equivalent to at most 2nV − 3 other structural parameter vectors
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in the sense that they all generate the same reduced form. As such, while
point identification may not be achieved, any true structural parameter vec-
tor fails to be identified relative to at most 2nV − 3 alternatives. Notice that
complete identification is stronger than local identification. Local identification
implies that for the true structural parameters, there exists an open neighbor-
hood of these parameters that does not contain any observationally equivalent
structural parameters. The set of observationally equivalent structural param-
eters could nonetheless be countable. Complete identification requires that
the set be finite, which implies local identification. Part ii. notes that if there
are no social interactions, this imposes sufficiently strong restrictions on the
reduced form parameters to identify both c and also requires that the matrix of
reduced form parameters is proportional to an identity matrix. We believe that
refinements of theorem 7.i are possible and leave this to future work.

These examples illustrate how the results of sections 3 and 4 are far
from exhaustive in understanding the identification of linear social interactions
models.

5 Discrete choice models of social interactions

In this section we consider identification for discrete choice models. Identifica-
tion conditions for discrete choice models will prove to be conceptually quite
different than the conditions that apply to linear models. Some reasons are
trivial. For example, discrete choice models, because they involve probabil-
ities, are inherently nonlinear and as we have discussed, nonlinear models
have very different identification conditions than linear ones. Other differences
will prove to be more subtle.

i. binary choice: basic structure

We first focus on binary choice models of social interactions. These have
been the primary focus of theoretical work. Early theoretical studies include
Blume (1993), Brock (1993), Durlauf (1993) and Glaeser, Sacerdote, and
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Scheinkman (1996). Recent contributions which generalize these earlier anal-
yses in terms of the timing and network structure of interactions as well as in
terms of belief formation include Bisin, Horst, and Özgür (2006), Horst and
Scheinkman (2006) and Ioannides (2006).

Durlauf and Ioannides (2010) provide an overview of some of the in-
teresting theoretical properties of these models. We provide a brief summary
in appendix 3. Unlike the linear in means model, discrete choice models of
social interactions can exhibit multiple equilibria. Multiple equilibria are a well
known challenge to identification in contexts such as industrial organization
but will turn out to facilitate identification of social interactions.43 A second im-
portant property of discrete choice models with social interactions is that they
may exhibit bifurcations around certain parameter values, which essentially
means that there will exist threshold values for model parameters such that if
the parameters take values below the threshold, the environment under study
will exhibit one set of qualitative properties whereas if the parameters take
on values greater than the threshold, the environment will exhibit qualitatively
different properties. Since these properties are observable, identification can
depend on the values of the model parameters. Appendix 3 illustrates these
properties under the case of logistic errors, using a model due to Brock and
Durlauf (2001a).

Identification for binary choice models has been studied in detail by
Brock and Durlauf (2001a,b, 2007); other contributions include Soetevent and
Kooreman (2007). We follow Brock and Durlauf (2001a,b) for the development
of an initial structure and indicate how subsequent analyses have relaxed as-
sumptions relating to their formulation. Choices are coded so that they belong
to the set {−1, 1}. If the context is teenage pregnancy, then +1 can denote
had a child while a teenager while −1 can denote did not have a child while a
teenager. To interpret these choices as the outcomes of a decision problem,
we define individual-specific payoff functions Vi(ωi).

An econometrically implementable choice structure is implemented by
assuming the difference between the payoffs for the two choices is additive in

43See Berry and Tamer (2006) for an overview, and Beresteanu, Molchanov, and Molinari
(2008) and Galichon and Henry (2008) for recent advances in partial identification.
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the different factors that have been defined for the linear model, i.e.44

Vi(1) − Vi(−1) = k + cxi + dyg + Jme
ig − εi. (59)

Note that unlike the linear in means model, it is not necessary to require J ∈
[0, 1) because here it has a different interpretation, as a utility parameter. We
will almost always discuss the model as if J > 0 as this is the standard case
of interest in the literature, but theory imposes no natural upper bound on J.
Analogous to our initial analysis of the linear in means model, we make two
error assumptions. First, the expected value of the unobservable εi term is
independent of observable features of the individual and any features of his
group:

F(εi|(x j) j∈g, yg, i ∈ g) = Fε(εi). (60)

Second, any pair i and j of the errors are conditionally independent within and
across groups:

F(εi, ε j|(xk)k∈g, yg, i ∈ g, (xl)l∈h, yh, j ∈ h) = Fε(εi) · Fε(ε j)

unless i = j and g = h.
(61)

These conditions are the analogs of the error restrictions (8) and(9) that were
initially imposed on the linear in means model. These conditions are substan-
tially stronger than those that appear in the linear in means model as they
impose conditional independence rather than set certain conditional expecta-
tions equal to 0. They are also stronger than needed for identification proofs. It
is well understood in the discrete choice literature that median restrictions can
play a role analogous to expected value restrictions in linear models.45 We
make them here for ease of exposition and to link directly to theoretical results
as developed in Brock and Durlauf (2001a,b, 2007).

The decision problem for this binary choice context is simple: individual
i chooses +1 if and only if Vi(1) − Vi(−1) ≥ 0. Hence

µ(ωi = 1|xi, yg, i ∈ g) = µ
(
Vi(1) − Vi(−1) ≥ 0

)
=

µ(εi ≤ k + cxi + dyg + Jme
ig) = Fε(k + cxi + dyg + Jme

ig).

44The payoff differential is written in terms of −εi for algebraic convenience. See the deriva-
tion of choice probabilities in appendix 3.

45See Horowitz (2009) for an extended treatment.
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As before, the model is closed by imposing an equilibrium condition on beliefs.
Each person is assumed to know yg, Fε, and Fx|g, the empirical within-group
distribution of xi. When the population size is large, equilibrium requires that
the expected value of the average choice level in the population, given this
information, is defined by

mg = 2
∫

Fε(k + cx + dyg + Jmg)dFx|g − 1. (62)

There typically does not exist a closed form solution for mg.

McFadden (1974) observed that the logit, probit, and similar discrete-
choice models have two interpretations. The first interpretation is that of in-
dividual random utility. A decisionmaker draws a utility function at random to
evaluate a choice situation. The distribution of choices then reflects the distri-
bution of utility, which is the object of econometric investigation. The second
interpretation is that of a population of decisionmakers. Each individual in the
population has a deterministic utility function. The distribution of choices in
the population reflects the population distribution of preferences. Brock and
Durlauf (2001a) (and theoretical models such as Blume (1993)) extend this
idea to games. One interpretation of this game theoretic approach is that the
econometrician confronts a population of random-utility maximizers whose de-
cisions are coupled. These models extend the notion of Nash equilibrium to
random-utility choice. The other interpretation views an individual’s shock as
known to the individual but not to others in the population (or to the econom-
trician). In this interpretation, the Brock-Durlauf model is a Bayes-Nash equi-
librium of a game with independent types, where the type of individual i is the
pair (xi, εi). Information is such that the first component of each player i’s type
is common knowledge, while the second is known only to player i.

ii. identification

Identification of the parameters in the binary choice model holds for very differ-
ent conditions than were seen in the linear in means case. These differences
derive from the nonlinear nature of the binary choice and do not require that
the functional form Fε is known a priori. The following theorem is proved in
Brock and Durlauf (2007). We emphasize that the theorem’s conditions are
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sufficient, not necessary, and were chosen to render the sources for identifi-
cation transparent.

Theorem 8. Identification of the binary choice model with social interac-
tions. Suppose for the binary choice model social interactions described by
equations (59) through (62),

i. conditional on (xi, yg), the random payoff terms εi are distributed ac-
cording to Fε, and Fε(0) = 0.5;

ii. Fε is absolutely continuous with associated density dFε. dFε is positive
almost everywhere on its support, the interval (L, U), which may be
(−∞,∞);

iii. for at least one group g, conditional on yg, each element of the vector xi
varies continuously over all R and supp(xi) is not contained in a proper
linear subspace of RR;

iv. yg does not include a constant; each element of yg varies continuously
over all R; at least one element of d is non-zero; and supp(yg) is not
contained in a proper linear subspace of RS.

Then k, c, d, J and Fε are identified up to scale.

The intuition for why identification holds is as follows. Within a given
group, dyg + Jmg is constant for all agents. Assumptions i)–iii) are sufficient
to ensure that within that group, the parameter vector c and density function
Fε are identified up to scale. Identification of these objects up to scale was
originally established by Manski (1988). The assumptions stated here allow
for a proof structure that mimics Horowitz (2009). Assumption iv) ensures
that k, d and J are identified up to scale. Identification of k is trivial if the
other parameters are identified. The reason why d and J are identified is that
the unbounded support on the yg element with a nonzero coefficient ensures
that mg and yg cannot be linearly dependent. This follows simply from the
fact that mg is bounded between −1 and 1. This bound is not driven by any
functional form assumption but follows from the fact that the expected choice
values are functions of the choice probabilities which are bounded between
0 and 1. Hence the argument for identification is analogous to one of the
basic reasons why bounds can be established on probabilities in the partial
identification literature. (See Manski (2003) for a synthesis.) Note as well that
this is not an identification at infinity argument.
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This theorem extends Brock and Durlauf (2001a,b) who proved iden-
tification when Fε is a negative exponential distribution of the type used in
appendix 3 and Brock and Durlauf (2006) who proved identification for general
Fε when Fε is known a priori. Clearly the conditions of this theorem can be
relaxed. For example, if condition iii) holds for all groups, then one can allow
for multiple Fεg’s, i.e. different group-specific distributions. Similarly, one does
not need unbounded supports for all regressors, rather what one needs is a
large enough support for a nonlinear relationship between mg and yg to ensure
identification.

iii. observability of actions

The identification results in Brock and Durlauf (2007) are sensitive to the as-
sumption that individuals react to expected rather than realized behaviors of
others. This follows from the assumption that an individual’s random shock
is observed only by himself. Soetevent and Kooreman (2007) build a game
theoretic model with a different assumption. They assume that each individual
knows the other individuals’ shocks, that shocks are invisible only to the econo-
metrician. Thus in equilibrium, each individual’s expectation of the average
choice of others will be the realized average choice of others. Soetevent and
Kooreman have replaced the incomplete information and Bayes-Nash equilib-
rium of Brock and Durlauf (2001a) with complete information and Nash equi-
librium. They justify their informational assumption by presuming to study in-
teractions in relatively small groups of given sizes in which choices of other
individuals are assumed to be fully observed, and therefore an individual’s
payoff depends on the actual choice of others in his group, as opposed to
expected choices as in Brock and Durlauf. This difference in information struc-
ture and the resulting equilibrium concept makes for an interesting contrast
between the identification conditions in the two models. The equilibrium payoff
difference equation (59) now becomes

Vi(1) − Vi(−1) = k + cxi + dyg +
J

ng − 1

∑
j,i

ω jg − εi. (63)

Like Brock and Durlauf, Soetevent and Kooreman focus on pure Nash equilib-
ria with binary outcomes and estimate the model in effect as a system of simul-
taneous equations by means of simulation methods. Each individual choice is



69

determined by the rule

ωig =

1 if k + cxi + dyg +
J

ng−1
∑

j,i ω jg > εi;

−1 if k + cxi + dyg +
J

ng−1
∑

j,i ω jg ≤ εi .

Unlike the Brock and Durlauf model, for given values of parameters (k, c, d, J)
and data (xi, yg), the decision rules for the individual agents may not produce
unique strategy profiles.46 This creates a very different multiple equilibrium
problem than occurs in Brock and Durlauf, since in the latter, each agent has a
unique strategy profile given the expected average choice mg. Consequently,
the normal approach of forming the likelihood function would not be appropri-
ate in their case even when the εi’s are independent.

Soetevent and Kooreman employ simulation-based estimation meth-
ods to compute the likelihood that any choice pattern would be observed. Their
approach accounts for the potential multiplicity of non-cooperative equilibria.
For parameter values that generate multiple equilibria they assume that the
equilibria are equally likely, which in turn guarantees statistical coherency of
the model.47 Simulation of the model over different regions of the parameter
space allows for calculation of the number of equilibria for draws of the εi’s
which are assumed to be i.i.d. normal. The procedure skirts the issue of exact
identification of the model (no proof of identification is given) but provides a
practical approach for implementation of their theoretical model. Also, in their
actual estimation, Kooreman and Soetevent exclude contextual effects by set-
ting d = 0.

46Soetevent and Kooreman (2007, pp. 602-3). This finding verifies the claim by Krauth
(2006b) that with small (finite-size) social groups, the Brock and Durlauf model can exhibit
multiplicity of strategy profiles whenever observed group behavior exerts any influence. The
range of equilibrium group behavior depends on the size of the social group as well as its
strength of influence.

47The assumption that all equilibria are equally likely is questionable. Blume and Durlauf
(2003) show that in dynamic analogs of the Brock and Durlauf model, the percentage of time
spent in the vicinity of the highest average utility equilibrium exceeds that of other equilibria;
similarly Brock and Durlauf (2001b), for a version of the discrete choice model of social inter-
actions in which the conditional probabilities of each choice depend on the realized choices of
others, show that the equilibrium choice configuration will assign almost all probability to the
social optimum as the population becomes large. While these analyses employ different mi-
crofoundations from Soetevent and Kooreman, they suggest that not all equilibria are equally
likely. We thank James Heckman for discussion on this general issue.
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The multiplicity of equilibria in Soetevent and Kooreman is very simi-
lar to types of multiplicity that have been studied in the industrial organization
literature. Tamer (2003) launched a now thriving literature on multiple equi-
libria and partial identification by means of bounds for industrial organization
contexts. This body of work, surprisingly, has had little contact with the social
interactions literature. Clearly both literatures would benefit from integration.

iv. unobserved group effects

Unobserved group effects may be introduced in a fashion directly analogous
to the linear in means model. Specifically, payoff differentials are described by

Vi(1) − Vi(−1) = k + cxi + dyg + Jmg + αg − εi.

Here αg is a fixed effect and equilibrium is required. Recall that individual
agents are assumed to observe αg while the analyst does not.

Without any restrictions on this fixed effect, it is evident that identifi-
cation breaks down. Note that the presence of a fixed effect does not affect
identification (up to scale) of c and Fε. This holds because αg is constant
within a group and so is subsumed in the constant term. To see why the other
parameters are not identified, observe that parameter values k, d and J are
observationally equivalent to k̄, d̄ and J̄, that is, for all yg ∈ supp y,

k + dyg + Jmg + αg = k̄ + d̄yg + J̄mg + ᾱg

if one chooses ᾱ = α+ Jmg and J̄ = 0. Thus J and d are not identified. (See
Brock and Durlauf (2007) for an elaboration.) We can therefore state:

Theorem 9. Nonidentification with unobserved group effects. In the pres-
ence of unobserved group interactions whose properties are unrestricted, the
parameters of the binary choice model with social interactions are not identi-
fied up to scale.

In response to unobserved group effects, instrumental variables and
differencing strategies are available just as occurs for linear models. Our re-
marks on instrumental variables for the linear in means model apply for the
binary choice context as well and so are not repeated. Instead, we focus on
two strategies, one which parallels the linear in means model and one which
is new and only applies in the binary choice context.
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a. panel data

We first consider how panel data can be used to eliminate unobserved group
effects for the binary choice model. Panel data, of course, allows one to con-
sider differencing methods. The notion of differencing in panels for binary
choice data is more subtle than was the case for the linear in means model
since it involves considering differences in probabilities across time. Chamber-
lain (1984) provides the generalization of differencing to discrete choice con-
texts. Identification of social interactions with differencing is studied in Brock
and Durlauf (2007) who consider

Vit(1) − Vit(−1) = k + cxit + dyg + eygt + Jmgt + αg − εit. (64)

The vector ygt is introduced in order to distinguish between those contextual
effects that are time varying and those that are not. Applying Chamberlain’s
ideas on quasi-differencing of discrete data to models with social interactions,
Brock and Durlauf verify a corollary to theorem 8.

Corollary 2. Identification of a subset of parameters with panel of the
binary choice models of social interactions with fixed effects. For the
binary choice model with social interactions described equations (59)–(62),
assume that within period-choices are described by equation (64) and that
the model equilibrium conditions hold period by period. If the assumptions of
theorem 8 hold for all t, then c, e and J are identified up to scale whereas k
and d are not identified.

b. partial identification

For binary choice models, Brock and Durlauf (2007) have proposed partial
identification approaches to social interactions which involve weak assump-
tions on unobservables. We consider two examples. The partial identifica-
tion arguments we develop are qualitatively different from those that typically
appear in the econometrics literature. The reason is that we do not estab-
lish probability bounds. Rather, we show how certain empirical observations
represent evidence of social interactions, even though parameter magnitudes
cannot be bounded. The approach we describe is theory-dependent in the
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sense that it involves asking how the introduction of unobserved heterogeneity
into various models affects their properties. Put differently, we are concerned
with uncovering “footprints” of social interactions in heterogeneity-filled envi-
ronments using various theoretical models as the basis for the analysis.

Our first example of a weak assumption is first order stochastic mono-
tonicity of group level unobservables. We assume that yg is measured so that
d ≥ 0. We denote the conditional distribution of the unobservable given yg as
Fαg|yg . Letting � denote first order stochastic dominance, and using > when
comparing vectors to mean that each element of one vector is greater than the
corresponding element of the other, we assume

if yg > yg′ , then Fαg|yg � Fαg′ |yg′ . (65)

This assumption is sufficient to produce partial identification of social interac-
tions.

Theorem 10. Pattern reversals and partial identification of endogenous
social interactions. For the binary choice model with social interactions de-
scribed by equations (59)–(62) suppose that the distribution of fixed effects
exhibits first order stochastic dominance with respect to the contextual effects
as characterized by equation (65). If assumptions i)–iv) in theorem 8 hold and

yg > yg′ and E(mg|yg) < E(mg′ |yg′), (66)

then it must be the case that J > 0 and J is large enough to produce multiple
equilibria.

The term “pattern reversals” refers to the case where the observed
characteristics of two groups suggest one ordering in their expected average
outcomes, while the opposite ordering in fact holds.48 This reversal of out-
comes with respect to fundamentals can occur for three reasons. One possi-
bility is that the observed outcome ordering is due to sampling error. This is
irrelevant to identification because of the analogy principle. The second rea-
son is that the unobserved group effects reverse the ordering that is implied
by dyg. This is ruled out, in an expectations sense, by the stochastic domi-
nance assumption. The only remaining reason for the pattern reversal is that

48Of course, expected group values are not directly observed. Our identification analysis
replaces sample means with population means, following the analogy principle.



73

there are multiple equilibria associated with mg such that the low yg group has
coordinated on the high expected average outcome equilibrium whereas the
high yg group has not. This is why the theorem requires multiple equilibria.
To be clear, endogenous social interactions may be present when no pattern
reversal occurs. All that can be said is that a pattern reversal in the presence
of stochastic dominance in the sense of (66), is evidence of social interactions.

Our second example involves restricting the conditional density of the
unobserved group interactions given observed group characteristics, that is,
dFαg|yg , via unimodality,

for all yg, dFαg|yg is unimodal. (67)

This assumption is sufficient to verify

Theorem 11. Partial identification of endogenous social interactions when
the density of unobservables is unimodal. For the binary choice model with
social interactions described by equations (59)–(62), suppose that fixed effects
are added as characterized by equation (67). If assumptions i)–iv) in theorem
8 hold, then

i. if J = 0, then dFmg|yg is unimodal;

ii. if J > 0 is large enough to produce multiple equilibria for the binary
choice model with social interactions, then dFmg|yg is multimodal.
This result also is based on multiple equilibria. In this case, the multiple

equilibria produce the multimodality described in the theorem. Two observa-
tions should be made about this result. First, no analogous result exists for
the unconditional density of expected outcomes, dFmg . The reason is that
integrating dFmg|yg over yg to produce dFmg would not necessarily preserve
multimodality if it is present in the conditional density and, in contrast, may
spuriously produce it when it is absent from the conditional density. This fol-
lows from the nonlinear relationship between mg and yg. Second, multimodal-
ity is sufficient but not necessary for multiple equilibria in dFmg|yg as mixture
densities are not necessarily multimodal.49

One message of these two examples is that unlike other contexts, mul-
tiple equilibria can facilitate the identification of social interactions. The reason

49See Lindsay (1995, p. 4–5) for a nice example of a unimodel two-part mixture.
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for this is that endogenous social interactions are the only mechanism by which
multiplicity can be generated in these environments.

These theorems illustrate a general feature concerning multiple equi-
libria and social interactions, namely that multiple equilibria do not represent
an impediment to the identification of social interactions but rather may be of
use to an analyst. This possibility was first recognized for the binary choice
case in Brock and Durlauf (2001b). The theorems we have presented by no
means exhaust the potential use of multiple equilibria to uncover social in-
teractions. de Paula and Tang (2010), for example, argue that multiple equi-
libria, because they imply that observed choice probabilities are mixtures of
equilibrium-specific choice probabilities, may be used to uncover the sign of
endogenous interactions J. We discuss their work below.

v. self-selection

Self-selection for discrete choice models has generally been handled using in-
strumental variables methods. The concerns we articulate about this strategy
for the linear in means model apply to the discrete choice context as well. In
parallel to the case of group level unobservables, Brock and Durlauf (2007)
provide a number of partial identification results which hold under relatively
modest assumptions.

To do this, Brock and Durlauf (2007) treat the membership question
as the outcome of a matching problem and place some restrictions on the
equilibria that emerge from the matching. Matching is assumed to occur with
respect to an individual index Ai and a group index Tg, defined as

Ai = cxi − εi (68)
Tg = dyg. (69)

In the context of peer effects in classrooms, Ai may be thought of as student
ability and Tg as teacher quality. For simplicity, the individual characteristics xi
are assumed to be measured so that c ≥ 0.

Individuals and groups are matched in the sense that higher group
quality is associated with higher individual quality. With respect to the equi-
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librium matching process, Brock and Durlauf assume

For any pair of groups g and g′, Tg > T ′g ⇒ FA|Tg � FA|Tg′ . (70)

This assumption is weaker than one which imposes strict assortative match-
ing between better groups and higher ability individuals; the latter is predicted
by models such as Becker (1973). The assumption is qualitatively consistent
with a range of payoff functions that relate groups and individuals, see Sat-
tinger (1993) for a survey of equilibrium matching problems. Note that (70)
places an implicit restriction on Fε|yg i∈g. This assumption on matching leads to
theorem 12.

Theorem 12. Partial identification of endogenous social interactions un-
der assortative matching. For the binary choice model of social interac-
tions (59)–(62), assume assortative matching as described by (70). Then
E(mg|Tg) > E(mg′ |Tg′).

This theorem is useful as it indicates how the presence of endogenous
social interactions may be inferred if Tg > Tg′ yet E(mg|Tg) < E(mg′ |Tg′). This
can only occur, under the specification we have assumed, if group g has coor-
dinated on an equilibrium expected average choice level other than the largest
of the possible equilibria associated with it while group g′ has coordinated on
an equilibrium other than the lowest possible expected average choice level
among those it could have attained. The existence of multiple equilibria imme-
diately implies J > 0.

The use of assortative matching to facilitate identification may be ex-
tended to panel data. To do this, modify (68) and (69) so that Ait = k +
cxit + εit and Tgt = dyg + eygt and that (70) holds period by period. Brock and
Durlauf show:

Corollary 3. Equality of average outcomes with equal observable con-
textual effects. Assume that the binary choice model of social interactions
(59)–(62) holds for all t with equilibrium at each date and assortative matching
as described by (70). If J = 0 or J > 0 but is sufficiently small that mgt is
unique, then ygt = ygt′ implies mgt = mgt′ .
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vi. beyond the binary choice model

a. multinomial choice

Little econometric work has been done on multinomial choice models with
social interactions; as far as we know the only contributions are Brock and
Durlauf (2002,2006) and Bayer and Timmins (2007). Nevertheless these mod-
els seem important in many contexts. We develop the analog to the binary
choice model and establish identification. Multinomial choice models with so-
cial interactions can exhibit multiple equilibria and bifurcations in parallel to
those found in binary choice models. Appendix 3 provides a brief discussion.

To formulate the model, we consider an environment in which each
member of a common group makes a choice l from a common choice set with
L discrete possibilities, i.e. Ωig = {0, . . . , L − 1}. The same choices are as-
sumed to be available regardless of group. The common choice set assump-
tion is without loss of generality, since if agents face different choice sets, one
can always assume their union is the common set and then specify that certain
choices have payoff of −∞ for certain agents. Individual utility is defined as

Vig(l) = kl + cxi + dlyg + Jpe
igl + β−1εil (71)

Here pe
igl denotes agent i’s expected value for the fraction of group g that

chooses l. This generalizes the preference structure of the binary choice
model to account for any number of choices. As before, β indexes the degree
of heterogeneity in the random payoff term εil. We assume that these unob-
served utility terms are independent and identically distributed with a common
distribution function Fε. In parallel to the binary choice case

F(εil|(xm)m∈g, yg, i ∈ g) = Fε(εil)

and

for all i, j, g, h, k, l such that not all of i = j, g = h, k = l hold
F(εikε jl|(xm)m∈g, i ∈ g, yg, (xn)n∈h, yh, j ∈ h) = Fε(εik) · Fε(ε jl)

For this model, the probability that agent i makes a particular choice l is the
probability that l produces the maximum payoff among all choices according
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to (71). This amounts to the joint probability defined by

µ



εi0 − εil ≤ β(kl + clxi + dlyg + Jl pe
igl

− k0 − c0xi − d0yg − J0 pe
ig0)

...
εi L−1 − εil ≤ β(kl + clxi + dlyg + Jl pe

igl

− kL−1 − cL−1xi − dL−1yg − JL−1 pe
ig L−1)


.

Following an order-statistics argument50 the probability of choosing l condi-
tional on a particular realization of εil is∏

j,l

Fε
(
β(kl + clxi + dlyg + Jl pe

igl) − β(k j + c jxi + d jyg + J j pe
ig j) + ε

)
which immediately implies that the unconditional probability of the choice l is

pigl =

∫ ∏
j,l

Fε
(
β(kl + clxi + dlyg + Jl pe

igl)

− β(k j + c jxi + d jyg + J j pe
ig j) + ε

)
dFε (72)

In equilibrium, the aggregate choice probabilities of this general multinomial
choice model are the solutions to

pgl =

∫ ∫ ∏
j,l

Fε
(
β(kl + clxi + dlyg + Jl pe

igl)

− β(k j + c jxi + d jyg + J j pe
ig j) + ε

)
dFεdFx|g . (73)

Brock and Durlauf (2006) prove a general identification theorem for the multi-
nomial choice model.

Theorem 13. Parametric identification for the multinomial choice model.
Let the true data generating process be given by (71)–(73) and assume that
Fε is known. Under the normalization k0 = 0, c0 = 0, d0 = 0, and J0 = 0, if

i. the mapping defined by equation (73) is globally one-to-one,

50Anderson, de Palma, and Thisse (1992, p. 36) provides a clean exposition.
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ii. the joint support of xi, yg is not contained in a proper linear subspace
of RR+S,

iii. the support of yg is not contained in a proper linear subspace of RS,

iv. no linear combination of elements of xi and yg is constant,

v. for each individual i, conditional on yg, xi is not contained in a proper
linear subspace of RR,

vi. none of the elements of yg has bounded support,

vii. for all l, pgl is not independent of g,
then the vector of model parameters (k1, c1, d1, J1, . . . , kL−1, cL−1, dL−1, JL−1) is
identified up to scale.

We emphasize that these conditions are sufficient, not necessary. The
careful reader will observe that these conditions have not been reconciled with
the conditions for the binary choice model. We do not do this in order to avoid
uninteresting modifications of the proofs of the original theorem.

Relative to the binary choice identification theorem, conclusion of the
theorem is weaker as it requires that the error distribution is known a priori. As
far as we are aware, there does not exist any multinomial generalizations of
Manski (1988) so that the error distribution may be identified (up to scale) via
intragroup variation in individual characteristics and associated behaviors.

Bayer and Timmins (2007) study a variation of the multinomial choice
problem which focuses on choices across locations. They thus consider a
population that forms a single group. We omit the group index in describing
their model. In terms of the error structure, they set β = 1 in (71) and assume
that the error terms are double exponentially distributed,

µ(εil ≤ ζ) = exp
(
− exp(−βζ + γ)

)
. (74)

In terms of preferences, they follow the industrial organization literature in al-
lowing for coefficient heterogeneity; their implementation of this heterogeneity
is the opposite of the formulation one finds for hierarchical models in that the
heterogeneity is determined by individual characteristics. In addition, they al-
low for unobserved choice-specific fixed effects. This produces choice-specific
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payoffs

Vi(l) = dilzl + Jil pil + ξl + εil

where

dil = d + Dlxi, Jil = J + Jlxi

and ξl is an unobserved location-specific effect. Bayer and Timmins use the
functional form assumption (74) to construct instruments for estimation of this
model. Their approach is a variant of models that all fall under the approach
pioneered by Berry, Levinson, and Pakes (1995). An interesting aspect of
Bayer and Timmins’ work is that they focus on identification power that derives
from changes in substitution patterns in multinomial choice models.

b. duration models

A number of studies have sought evidence in dynamic contexts based on dura-
tion and optimal stopping problems. Brock and Durlauf (2001b) first discussed
this approach to modeling social interactions, albeit briefly. Sirakaya (2006)
studies recidivism under the assumption the individual hazard function for an
individual probationer depends on individual and neighborhood characteristics
as well as social interactions among probationers. She allows for two types of
social interactions: the mean hazard rate for probationer’s in i’s neighborhood,
mg, and mean time to recidivate in the population, rg. These are estimated
over the entire sample, and so are not time varying. The hazard rate she
employs takes the functional form

mig(t, xi, yg, mg, rg) = ε0(t) exp(k + cxi + dyg + J1mg + J2rg), (75)

where ε0(t) denotes the baseline hazard function. (Since the model is ex-
pressed in continuous time, t is treated as an argument rather than a sub-
script.) Sirakaya addresses unobserved group effects by considering frailty
model variations of (75) which helps address issues of unobserved group ef-
fects. Probationers are assigned to neighborhoods, which eliminates issues of
self-selection. Sirakaya finds strong evidence that endogenous social interac-
tions effects matter.
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A particularly sophisticated analysis is due to de Paula (2009) who
uses the same data explored by Costa and Kahn (2007), mentioned in the
introduction as an outstanding example of the use of history to uncover social
interactions, to estimate hazard models of desertions among Union soldiers
in the Civil War. de Paula develops a formal model of exit decisions in which
the payoff of desertion exhibits dependence on the desertions choices of oth-
ers. In his model, the expected payoff to desertion at time τ is decreasing in
the fraction of the population of prisoners that have previously deserted, in the
sense that the utility of desertion at a given point in time is increasing in the
number of contemporaneous deserters, which depends on the size of contem-
poraneous prisoner population. de Paula formalizes this idea using a contin-
uous time coordination model. Identification is formally proved for the model
and evidence is adduced that bunching in desertions occurred in a way that is
consistent with social interactions. This work is extended to an elegant discus-
sion of semiparametric identification of interdependences in duration models
in Honoré and de Paula (2010).

c. uncovering social interactions via their effects on laws of large num-
bers and central limit theorems

When social interactions generate dependence across agent behaviors in a
group, their presence will have implications for the convergence rates of sam-
ple means and so will affect laws of large numbers and central limit theorems
associated with data sampled from the group. A number of authors have pro-
posed ways to exploit these effects in order to generate social interactions. A
neglected theoretical predecessor to this social interactions work is Jovanovic
(1987) who studies how interdependences could lead idiosyncratic shocks to
produce aggregate uncertainty.

One approach of this type is due to Glaeser, Sacerdote and Scheink-
man (1996). Their objective is to examine whether endogenous social interac-
tions contribute to cross-city variation in crime rates. One can interpret cities
as groups and code the crime/no crime choice as ωi = 0 and ωi = 1 respec-
tively, in order to preserve our binary choice notation. If one thinks of persons
across all cities as having a common probability p to commit a crime, then
the crime rate for the population of city g will have an associated variance of
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p(1 − p)/ng. On the other hand, the presence of social interactions may in-
crease this variance by introducing dependence across choices. To formalize
this intuition, Glaeser et al consider a model in which individuals are placed
on a line and indexed outwards from the origin, {0,±1,±2}, so that a city of
size ng = 2n + 1 will have individuals ranging from −n to n. They propose
a stochastic process for choices in which individuals in a city come in three
types: type 0 individuals are always law abiding, type 1’s are always criminals,
and the remaining type 2’s mimic their predecessor in the order. The assign-
ment of types to locations on the line is i.i.d. They show that this model pro-
duces greater cross city variance in crime rates than the model without social
interactions. Specifically, the variance in the crime rate is p(1− p)(2− π)/πng,
where p is the probability that an individual with fixed behavior is a criminal,
(1 − p) is the probability that a fixed individual never commits a crime, and π
is the probability that an individual is a fixed type. Without social interactions,
π = 1; that is, everyone is either type 1 or type 2. The presence of a group
in the population that can be influenced raises the variance. They propose
independently estimating p, and testing for social interactions by comparing
the variance of cross-city crime rates with p(1 − p)/ng, that would result from
no social interaction.

In order to operationalize this approach it is necessary to control for
cross-city differences in crime rates that are due to differences in fundamen-
tals. That is, the cross city test requires that under the null of no social interac-
tions, individuals within and across cities have equal probabilities of committing
crimes. Glaeser et al. address this both by accounting for observable crime
determinants such as demography and by either employing functional forms
to allow the fraction of the independents in a population to be estimated in the
presence of unobservable fundamental crime determinants or by bounding the
importance of the fundamentals “by assuming that the unobservable hetero-
geneity has twice the predictive power of a one-year lag of the city’s own crime
rate” (Glaeser, Sacerdote, and Scheinkman, 1996, p. 518).

One limit of the Glaeser et al approach is that evaluation of the role of
social interactions requires assumptions that rule out various types of cross-
section dependence across agents, in order to construct test statistics with
standard distributions. This is a standard problem in cross-section data analy-
sis, since these dependences presumably occur in some sort of social space
(Akerlof, 1997) and there is no natural metric for measuring distance between
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individual observations with respect to which one can argue that distance is
attenuated, as can be done in time series and spatial contexts and helps mo-
tivate HAC estimators (West, 2008). In fact, Glaeser et al’s reliance on aggre-
gate data rules out the use of such corrections even if the social space were
observable.

de Paula and Tang (2010) provide a set for tests of social interac-
tions that may be interpreted as extensions of the Glaeser, Sacerdote and
Scheinkman approach to looking at the properties of sample moments. de
Paula and Tang consider binary choices in which the payoffs in (63) are modi-
fied to

Vi(1) − Vi(−1) = k + cxi + J(xi)
∑
j,i

ω jg − εi.

There are several qualitative differences with (63). First, the endogenous so-
cial interactions parameter is allowed to depend on xi. The authors are inter-
ested in the case where the parameter is negative as well as positive. Second,
the endogenous effect depends on the number of agents making the choice,
not the average. Third, while the idiosyncratic shocks are still assumed to be
conditionally independent, their distribution functions are modeled as Fε|x, so
that each distribution function may depend on the individual’s characteristics.
The information set for agents is assumed to be the same as in Brock and
Durlauf (2001a) and elsewhere, and so leads to a Bayes-Nash equilibrium of
the type we have studied.

de Paula and Tang argue that even with individual level data, this model
is not identified. They therefore propose to study cases where groups are
composed of individuals with identical xi values. This leads them to argue
that multiple equilibria in groups with a given xi = x̄ can identify the sign of
J(x̄). When J(x̄) is positive, this is easy to see, since different groups will
have different expected average choice levels and so in the Glaeser et al.
sense produces excess intergroup variance in sample means. While this was
originally recognized in Brock and Durlauf (2001b), de Paula and Tang develop
the argument.

Further, de Paula and Tang argue that multiple equilibria can hold when
J(x̄) is negative. Their identification argument differs from our previous argu-
ments on how multiple equilibria facilitate identification. de Paula and Tang
shift their analysis from average choice to individual choices within a group.
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They show how negative J(x̄) can mean that there is a negative correlation
among intragroup choices. The key to their analysis is that even though aggre-
gate quantities such as the expected average group choice may be constant,
there are multiple equilibria with respect to which agents choose 1 as opposed
to −1. This represents a new view of the informational content of multiple
equilibria. This approach does require individual level data, unlike Glaeser et
al. We conjecture that if one focuses on average group behavior, a negative
J(x̄) would lead to lower variance in the sample averages of group behavior
than would occur when social interactions are absent, so that the aggregate
approach of Glaeser et al. may be applied to test for social interactions for this
case as well.

Another approach to the identification of social interactions via quali-
tative features of sample moments was suggested in the context of financial
applications in an early paper by Brock (1993) and uses bifurcations around
certain parameter values of a type where the Law of Large Numbers and the
Central Limit Theorem break down as in, for example, the statistical mechan-
ics models of Amaro de Matos and Perez (1991) and Ellis (1985). The basic
idea of this second approach is to explore how strong dependence between
choices can lead to qualitative changes in the properties of the joint stochastic
process for a set of choices. These types of breakdowns occur in variations
of the binary choice model, and they have some surprising consequences. In
the linear in means model, it is natural to use the sample mean as an instru-
ment for individuals expectations. Since equilibrium requires that individuals’
beliefs are the correct first moment of the population distribution of choices,
this amounts to using the sample mean as an instrument for the population
mean. While this approach is well-justified in the linear in means model, it
creates an equilibrium selection bias in binary choice models. If βJ > 1, the
model has multiple equilibria. Brock and Durlauf (2001b, pp. 3364–7) show
that there is a function H : R → R which can be thought of as a potential
function. It has the property that if m is a local maximum of H(βJm), then
m is an equilibrium expectation. Nonetheless, as the population size grows,
limn→∞mg ∈ argmax H(βJm). Generically, this set is a singleton, and so the
procedure of replacing the population mean with the sample mean in effect se-
lects one equilibrium, the equilibrium which globally maximizes m 7→ H(βJm).
The selection of equilibrium by an estimator should appear to be quite trou-
bling. The argument has been made that different dynamical processes of
choice revision by individuals (such as best-response and learning dynamics)
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select the potential-maximizing equilibrium.51 For the economist who is aware
of these results, the use of the sample mean as an instrument for beliefs in
binary choice models may be a virtue rather than a vice. One implication of
this selection effect is that estimates using the sample mean will behave dis-
continuously in the parameters of the model. The correspondence from model
parameters to global maxima of H is upper hemi-continuous but not continu-
ous — small changes in parameters can produce big changes in the location
of the global maximum (although not in the maximal value of H).

Brock and Durlauf (2006, section 2.3) extend this type of argument to
the multinomial case to show how a tiny change in the distribution Fh|g of the
characteristics of group g can cause a large change in the limiting value of
the fraction of group g choosing choice l among possible choices 0, . . . , L − 1,
provided βJ is greater than some critical value. This approach suggests that for
general social interactions structures a potential route to identification would
be to estimate the sum of absolute values of correlations among members
of a group, denote this S t and look for dates t∗ where S t changes abruptly.
While it is possible that the stochastic structure of the generating processes
of unobservables and selection effects that have not been accounted for by
estimating a model of selection into groups, e.g. equation (39) could display
similar abrupt changes.

We believe that exploitation of potential bifurcations due to endoge-
nous switching from weak dependent data generating processes to strong de-
pendent data generating processes is a potentially important area for future
research on the detection of footprints of endogenous social interactions in
various data sets. At the very minimum this kind of approach to identification
issues should help the scientist to get a better understanding of mechanisms
of abrupt change, whatever the ultimate cause of such abrupt change may
be.52

A different approach to this type of analysis is to explicitly study the
implications of dynamic analogs to the discrete choice models we have de-
scribed. Blume and Durlauf (2003) do this by explicitly considering evolution-

51See, for instance, Blume and Durlauf (2003) and Monderer and Shapley (1996).
52See Brock (2006) as well as other articles in Repetto (2006) in the context of trying to

explain possible causes of abrupt movements in environmental policy as well as other abrupt
movements in policy.
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ary game analogs of the Brock-Durlauf model. They show how the average
time spent around the higher average utility state the model approaches 1 as
noise in the individual choices shrinks to zero, while first mean passage times
at the extremal equilibria become unbounded. These sorts of properties repre-
sent the dynamic analogs to the use of cross-section properties to infer social
interactions. Hence we also see a need for further study of dynamic social in-
teractions models as these dynamics can produce distinct footprints of social
interactions.

d. beyond Bayes-Nash equilibrium

Very recent work on discrete choice models of social interactions has focused
on relaxing equilbrium belief restrictions. One approach is due to Li and Lee
(2009) who employ an interesting data set on the 1996 Clinton versus Dole
Presidential election. In this data set individuals were asked about their own
intended vote and whether they thought their reference group members (where
the reference group was well defined in the data set) would vote for Clinton,
Dole, a third party candidate, or not vote at all; these data are trimmed to pro-
duce a binary choice between the two major party candidates. Using these
data on the beliefs of each respondent about the voting choices of his refer-
ence group, Li and Lee compute a subjective expectation, which they denote
by pig, for each individual i, to play the role of me

ig in equation (62) above, and
use it to test the null hypothesis of equilibrium beliefs by the goodness of fit
in the binary choice model with independent types and equilibrium beliefs, as
opposed to the subjective expectations they construct. Using maximum like-
lihood estimation methods, Li and Lee produce two interesting results in this
part of their paper. First, they show that estimation effectiveness (measured by
the size of the likelihood and in-sample and out-of-sample prediction results) of
the binary discrete choice model with social interactions is improved when the
subjective expectation data are used in place of the equilibrium beliefs version
of the model. Second, they reject the null hypothesis of rational expectations.
Incorporation of group level unobservables does not qualitatively affect these
findings.

Notice, however, that their findings are still consistent with Bayes-Nash
equilibria, because conditional on their own type, people could have different
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beliefs about the types of others. In Bayes-Nash terms, this rejects the hy-
pothesis that types are independent. From this perspective, one could argue
that Li and Lee have rejected the complete (but imperfect) information version
of their game in favor of the incomplete information version.

Beyond the testing of the rational expectations hypothesis, Li and Lee
make a second methodological contribution by introducing heterogeneity in the
social interactions parameter across agents and allowing the data to measure
this heterogeneity by estimating a random coefficients version of the model
using simulation estimator techniques. They also estimate a threshold version
of the model in order to allow for nonprobabilistic voters, i.e. “die hard” Clinton
and Dole supporters who vote for their preferred candidate with probability
one. They find little evidence of parameter heterogeneity and virtually none for
nonprobabilistic voters.53

A very general analysis to understand the empirical implications of so-
cial interactions when rationality assumptions are relaxed is due to Aradillas-
Lopez (2009). This approach is based on Aradillas-Lopez (2008) and Aradillas-
Lopez and Tamer (2008) which develop methods for estimating games in
which players are sophisticated but not rational in the standard sense.54 Aradil-
las-Lopez and Tamer do this by assuming that individual beliefs are rationaliz-
able in terms of iterated-dominance; this allows them to consider identification
for different levels of iteration. In contrast, Aradillas-Lopez (2009) focuses on
a different notion of rationalizability for his social interactions context which we
now describe.

Aradillas-Lopez (2009) considers a multinomial choice social interac-
tions environment. Individual payoffs are not parametrically specified, as oc-
curred in section 5.vi.a. Rather, the only assumption imposed on these payoffs
is that they exhibit supermodularity with respect to the choices of others. The

53Li and Lee conduct in-sample and out-of-sample prediction analyses and find that out
of sample prediction is improved when endogenous social interactions are included. Thus,
regardless of whether the estimate of the social interactions parameter is simply picking up
selection effects or group level unobservables, it can still facilitate prediction. However if one
wants to make policy statements where it matters whether the endogenous social interactions
parameter is estimated consistently or not, then predictive improvement is an insufficient basis
for using the model. This is related to Manski’s (2010) argument on the usefulness of reduced
forms versus structural models of social interactions which is discussed in section 3.

54We thank Andres Aradillas-Lopez for much help in writing this discussion.
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supermodularity-type condition in Aradillas-Lopez (2009) takes the form of an
increasing differences assumption of payoffs with respect to an aggregate vari-
able that summarizes the strategic interaction effect. As noted in section 2,
supermodularity is a type of endogenous social interaction effect; note that as
a property of payoffs, it does not correspond to a parameter analogous to J
in our parametric models but rather is defined by a qualitative feature of indi-
vidual payoffs. Aradillas-Lopez’ supermodularity conditions produce a model
of ordered choice with social interactions, a class of models that had not been
previously studied.

Aradillas-Lopez develops sharp probability bounds for choice proba-
bilities under the assumption of rationalizability. Instead of using an iterated-
dominance definition for rationalizability, a set of choices in a population is con-
sidered to be ‘rationalizable’ if it represents a set of individual best responses
to an associated profile of individual beliefs each of which includes the joint
outcome in its support. At the individual level, this requires that each agent
assigns a strictly positive probability to the realized choices made by his oppo-
nents. These nonparametric probability bounds allow for separate inference
properties of individual payoff functions, specifically on whether they depend
on the choices of others. When multiple equilibria exist, these bounds can
also be used to characterize the selection mechanism used by agents to co-
ordinate on a given set of equilibrium choices. Aradillas-Lopez succeeds in
finding empirical restrictions implied by social interactions in an environment
with nonparametric payoff functions. His ability to do so under such weak
restrictions on beliefs strikes us as remarkable, and additionally represents
a demonstration of the power of the supermodularity concept in econometric
work.

6 Experimental Approaches

This section considers different approaches to the identification of social inter-
actions that involve various forms of experiments, ranging from the laboratory
experiments in which the analyst is free to specify much of the socioeconomic
environment to quasi-experiments in which a change in some environment
produces experimental-type conditions to social experiments in which a pol-
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icy change is implemented in order to generate evidence of social interactions
effects.

i. laboratory experiments

Given the difficulties involved in identification of social interactions from non-
experimental data, laboratory experiments would seem to offer a promising
alternative for studying social interactions. It should be possible, for instance,
to create experimental designs such that x̄g does not lie in the span of the
elements of yg, thus achieving differentiation of contextual from endogenous
effects in the linear in means model. Unobserved group characteristics are es-
sentially a measurement problem. By controlling what group members know
about each other, and by defining the environment of the interaction, unob-
served group characteristics can be eliminated. Finally, group membership
can be explicitly controlled, which addresses the self-selection issues.

The experimental literature on social interactions is voluminous. The
investigation of social preferences, including such concepts as altruism, fair-
ness, inequity aversion, reciprocity, and trust, is central to experimental eco-
nomics, and regarded as a significant achievement by its practitioners. None-
theless, experimental economists have eschewed serious econometric inves-
tigation of these data. Rather than bringing the formal tools of statistical in-
ference to experimental data, verbal models and arguments and descriptive
statistics are deployed to make arguments from experimental data.

We will argue that despite the increased opportunities for control of-
fered by the experimental laboratory, issues of identification do not disappear.
Rather than attempt to survey this literature, we will focus on identification is-
sues that arise in one particular game, the trust game. The trust game was first
studied in the laboratory by Berg, Dickhaut, and McCabe (1995). The game is
played as follows: A “trustor” is given a stock of money. He may keep all or any
part of it for himself, and turns the rest over to the “trustee”. The experimenter
increases the money handed to the trustee, so he receives a multiple greater
than one of the amount entrusted to him by the trustor. He may keep all or
any part of the money for himself, and returns the rest to the trustor. At the
conclusion of the game, the trustor has received what he kept for himself plus
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what he received from the trustee. The trustee has received what he kept for
himself.

If dollar returns are taken to be equivalent to payoffs, the only Nash (not
just subgame perfect) equilibrium of this game is the trustee to return 0, and
thus for the trustor to give 0 to the trustee. Deviations from the 0, 0 play are
alleged to be indications of trust. Trustors in the Berg et al. experiment were
given 10 dollars to allocate, and the share going to the trustee was tripled. The
average trustee’s share was 5 dollars, and only two of the thirty two subjects
they reported on gave 0 to the trustee. The trustees were less generous,
returning on average 95 percent of what the trustor gave. (Only 11 out of 30
trustees returned to the trustor more than he invested.) Thus the trustors had a
negative return on their investment in the trustees. Half of the trustees repaid
a dollar or less. These findings are robust. Repetitions of this experiment
have been done all over the world, with more or less similar findings. Different
versions of the game have been examined as well. Most popular have been
binary choice games in which a trustor chooses either to end the game and
receive a fixed payoff, or pass the move to the trustee. The trustee in turn
chooses either a fixed split of a larger amount, guaranteeing the trustee more
than he would have made had he quit, or keeping the entire amount for herself
and returning nothing to the trustor.

Berg, Dickhaut, and McCabe (1995, p. 23) ask the question, “Is trust
a primitive in models of economic behavior?” The first difficulty in bringing
experimental and other empirical methods to bear on trust is that one has to
know what one is measuring. Trust has proven to be a highly illusive concept.
Many theorists of trust see it as particular. Baier (1986), Hardin (2002) and
others see trust as a ternary relation: A trusts B concerning C. Hardin (2002,
p. 1) equates trust with “encapsulated self-interest”, by which he means a
reliance due to reciprocity. Baier (1986, p. 235) argues that trust is reliance on
another’s good will, rather than reliance on other attitudes and reactions, such
as fear or other incentives. It seems that she would reject Hardin’s reciprocity
definition, since fear of reprisal is distinct from good will. Baier also claims that
potential loss is a precondition for trust. “Trust, then, on this first approximation,
is accepted vulnerability to another’s possible but not expected ill will (or lack
of good will) toward one” (Baier, 1986, p. 235). Social capital theorists such
as Coleman (1988) and Putnam, Leonardi, and Nanetti (1993), and the many
economists who write on the importance of trust for economic growth such
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as Knack and Keefer (1997), are interested in general trust rather than in the
particular.55 This is not to say that they believe there are no limits to trust, but
they theorize about trust in situations where it would be surprising if reciprocity
played a significant role. Trust, for them, is more a generalized version of
Baier’s good will than it is Hardin’s encapsulated self-interest.

Identification would seem to be the first fundamental question one asks
when confronting a data set: “Is it at all possible to observe a particular phe-
nomenon in data coming from the supposed data-generating process?” But
this question presumes an understanding of what constitutes a measure of
the phenomenon being examined. The interpretation of trust-game data suf-
fers from a lack of models and even appropriate categories for defining results.
Thus Camerer (2003, p. 87) is able to write within the space of a single para-
graph and without any apparent irony, “K. . . found Bulgarian students were sur-
prisingly trusting. . . He speculates that Bulgarians are used to trusting among
themselves precisely because their trust in authority is so low. E. . . found
very little trust and trustworthiness among Orma herders in Kenya. . . Note that
Kenya is considered one of the more corrupt countries in the world, measured
by indices of ‘transparency’, which guess the extent of bribery, bureaucratic
corruption, and black market trade, so it is encouragingly consistent that this
simple game shows low levels of trust also.” Scholars even disagree on what
is being measured. Camerer (2003, p. 85) writes, “Sociologists and psycholo-
gists usually object that this game doesn’t capture all there is to trust because
the two-person one-shot game does not include relationships, social sanc-
tions, communication, and so many other rich features that may support or
affect trust. That’s precisely the point — the game requires pure trust.” Er-
misch and Gambetta (2006, p. 12) disagree. “This fear of ‘framing’ the exper-
iment simply ends up generating indeterminate stimula. Trustworthiness, by
contrast, does not exist in the void. There is no such thing as pure trust. It is
always trust in someone to do something, e.g. pay their debts, or look after
one’s children.”

The lack of a theory or even a generally accepted definition of trust
has not inhibited attempts to measure it. In addition to experimental measure-
ment from behavior in trust games, survey methods have been deployed in the
measurement of trust. The World Values Survey asks, for instance, “Generally

55The identification problems we have described for general social interactions models
apply a fortiori to empirical studies of social capital, see Durlauf (2002) for discussion.
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speaking, would you say that most people can be trusted, or that you can’t be
too careful in dealing with people?” Other surveys elicit a scale measurement
of the same general kind of question. Unfortunately, survey and experimental
measures of trust frequently disagree. Glaeser, Laibson, Scheinkman, and
Soutter (2000) and Ermisch, Gambetta, Laurie, Siedler, and Uhrig (2009) find
that attitudinal questions about trust do not predict trusting behavior in trust
games. Only Fehr, Fischbach, von Rosenbladt, Schupp, and Wagener (2002)
reach a different conclusion.

Keeping in mind that the entire enterprise is not well-founded, we now
turn to some particular identification issues in the analysis of trust game data.
It is clear that for the game-form presented in Berg et al., the choices of a
significant percentage of trustors and trustees are not Nash play of any game
where utility payoffs depend only on money, and do so monotonically. Re-
searchers have suggested a variety of explanations for the choices of trustees,
including a fairness norm and reciprocity. Explanations for the choices of
trustors include the expectation of trustworthy behavior and altruism towards
the trustees. The goal of statistical analysis is to uncover the distribution of
such behaviors in the population of trustors and trustees. There are two ways
to proceed. One requires that individuals understand the choice environment
the experiment puts them in. The analysis of such experienced players pro-
ceeds by estimating the distribution of types such that the data appears to be
the realization of draws from the Bayes-Nash equilibrium distribution of play.
The second approach is to assume that players are inexperienced. In this
case the individuals are not obviously optimizers of anything at all. Their be-
havior is imported from elsewhere. It is commonly believed that the laboratory
game induces a particular frame, perhaps by analogy with common experi-
ences. For instance, Henrich et al. (2005, p. 798), reporting on the choices of
their inexperienced subjects in ultimatum games, say of their subjects: “Exper-
imental play often reflects patterns of interaction found in everyday life.” This
approach poses two problems for the experimenter. First, Manski (2002) has
observed that without restrictions on beliefs and decision rules other than that
they rationalize choice (that is, without any equilibrium restrictions), the distri-
bution of players’ types may not be identified. Second, if players’ beliefs and
preferences come from frames of reference external to the experiment, it does
not seem that much will be learned about the world unless the experimenter
can either inquire about or control the subjects’ frames. Cronk (2007) demon-
strates both the importance of frames and how they may be manipulated in
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trust games played by Maasai tribesmen in Kenya.

Manski (2002) is concerned with the identification of the distribution of
preferences and beliefs in a population of game players. He assumes that
choice comes from maximization of expected utility, but does not make use
of any constraints imposed on beliefs that would normally come from equi-
librium conditions. This is entirely appropriate for modeling games played by
inexperienced players, but games played by experienced subjects offer more
opportunities for identification because the Bayes-Nash and other equilibrium
conditions impose cross-player constraints on beliefs. The hope is that when
a suitable equilibrium theory is employed, one can do better than Manski sug-
gests. The following two-player, two-strategy version of the trust game demon-
strates some of the opportunities and issues that will be encountered.56

Player 1, the trustor, has an opportunity to keep 10 dollars or give it to
player 2, the trustee. The money is tripled along the way. The trustee then
has the opportunity to split the 30 dollars evenly or to keep it all for himself.
The trustor’s strategies are illustrated in figure 1. The only Nash equilibrium
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in monetary payoffs is for the trustee to keep everything given to her, and for
the trustor to stay Out. We might imagine however, that trustors and trustees
both have utility functions exhibiting pro-social preferences. We suppose that

56Ermisch and Gambetta (2006) study a similar binary action game. Identification argu-
ments are informal. For instance, they wish to distinguish acting fairly from being trustworthy
as motives for the neighbor. They choose a non-symmetric sharing rule because, “Symmetric
payments may encourage fulfilling trust for reasons of fairness, rather than because E does
what is expected of her. . . ” (2006, p. 17). In other words, their identification strategy is to
claim that, ipso facto, any sharing that does not result from a 50:50 split is due to trustworthy
considerations and not fairness.
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the trustees are of two types: Keepers care only about monetary payoffs,
and so keep all the money. Sharers are sufficiently motivated by fairness or
reciprocity that they return half of the proceeds. The probability that a given
trustee is a sharer is Q. This is a parameter known to the trustors but not to
the econometrician, who must estimate it. Trustors also come in types. The
utility of going In is the sum of the expected return, 15Q, and a utility of being
altruistic α. That is, uo(I) = 15Q + α. The utility of Out is just the monetary
reward, uo(O) = 10 . The type distribution for trustors is uniform: α ∼ U[0, A].
Trustors and trustees are drawn independently from the appropriate type dis-
tributions and are matched to play. The equilibrium of this game is simple to
describe. Sharers Share, and Keepers Keep. Trustors of type α > 10 − 15Q
choose In, while trustors of type α < 10 − 15Q stay Out. The econometrician
wants to estimate the parameters of the type distributions, A and Q. The pos-
sible parameters are (A, Q) ∈ [0, 10] × [0, 1]. Parameter values (A, Q) such
that A + 15Q > 10 are point-identified. This region is labeled in figure 2. For
these parameter values, the fraction of trustors who play In identifies A, and
Q is identified by the fraction of trustors who Share. For parameter values on
the other side of the boundary, all trustors stay Out, the trustees never get
to choose, and their type is never revealed. In this game, it is the action of
trustors that allows identification of the trustee type distribution parameter to
be observed.

One advantage of the Bayesian framework is that it makes possible
inferences across games. For instance, Dufwenberg and Gneezy (2000) con-
sider a variant on the game of figure 1 where trustees can make any division
of 20 (rather than 30) should they get the move, and trustors can choose to
play In or Out, and receive x, which is varied across treatments. If it is as-
sumed that the type distributions are independent of x, then by changing the
treatment, any type distribution can be identified.

One might think that identification problems in this environment stem
from the fact that choices have a binary support, which delimits the combi-
nations of behaviors that can be observed. It is instructive to approach the
original Berg, Dickhaut, and McCabe (1995) trust game experiment from an
econometrics perspective to see how complicated identification can be. Man-
ski’s observation, that allowing for rationality but not restricting beliefs through
equilibria gives little identifying power, holds here as well. Thus we model
the experiment as a Bayesian game wherein preferences may reflect different



94

motives for trusting and being trustworthy, and see what the data say about
the distribution of tastes. We imagine that the subjects of the experiment are
drawn independently from populations of trustors and trustees, respectively,
and that the Bayesian common prior beliefs are the distribution of players’
types in the population. There are many ways to turn the trust experiment into
a Bayesian game. The model we describe was chosen because it suggests
some of the statistical techniques that are used in the experimental literature.

To this end, we suppose that trustors are motivated by three potential
considerations: The monetary return, conformance to a sharing norm, and
altruism. The utility function of a trustor who gives ωo and receives ωe from
the trustee is

uo(ωo,ωe) = 10 −ωo +ωe −
ψ

2
(ωo − η)

2 + ρωo.

The first term is the monetary payoff. The second term is the disutility of
non-conformity to a social norm η, which is a feasible transfer. The third is
altruism, the utility of giving. A type for a trustor is a triple (ψ, η, ρ), and the
type space is To = R+ × [0, 10] ×R+. A strategy for the trustor is a function
σo : To → [0, 10].

The trustee has a utility function of the form

ue(ωe,ωo) = δ(3ωo −ωe) −
φ

2
(ωe − γωo)

2 + αωoωe, (76)

where the parameter quadruple (δ, φ, γ,α) describes the trustee’s type. For
the utility function described in equation (76) the first term is the monetary
payoff, the second is conformity to a social norm, and the third creates a taste
for trustworthiness. Notice that the marginal utility of giving depends upon
what has been received.

We will simplify our analysis by imposing a constraint on the type space
for trustees, that the marginal utility of conformity is positive: φ > 0. Hence
utility can be renormalized so that φ = 1. The marginal utility of the transfer
ωe for the trustee when the trustor transfers ωo is then

u′e(ωe,ωo) = −δ̄ −ωe + (γ̄+ ᾱ)ωo + ν,

where δ̄, γ̄ and ᾱ are population means, and

ν = ωo(εα + εγ) + εδ.
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By construction, E(ν) = 0 since the ε’s are deviations from population means.
The type of a trustee is, given our normalization, the vector (α, γ, δ).

Figure 3: Type Space, Te = (α, δ, γ)

We suppose that individual trustees
can differ in their perception of what
the norm is, but this is not essential
for our analysis.57 The type space
is defined by 1) non-negativity of the
utility parameters, 2) that it is not
the norm to give back more than the
gross return on the transfer from the
trustor, and 3) an a priori constraint
on the transfer ωe, that it not exceed
the amount of money the trustee has
been alloted to divide: ωe ≤ 3ωo.
Without loss of generality, γ + α −
δ ≤ 3, since behaviors of types with
γ + α − δ > 3 are indistinguishable from that of types on the boundary,
ωe = 3ωo. Thus the type space for the trustees is

Te = {(α, δ, γ) ∈ R2
+ × [0, 3] : α+ γ − δ ≤ 3}

and trustee strategies are functions σe : Te × [0, 10] such that σe(t,ωo) ≤ 3ωo.

The specification of the Bayesian game is completed by specifying type
distributions µo and µe on the type spaces To and Te, respectively, for trustors
and trustees. Each individual trustor and trustee knows his own type, and
the distribution from which the other type is drawn. In this Bayesian game, the
type of the trustor is irrelevant to the trustee since the trustee sees the trustor’s
action when she must choose. The trustor, however, cannot be certain about
how much the trustee will return. The trustor will maximize expected utility,
where the expectation will be over the type of the trustee and the trustee strat-
egy function is known to him. The econometrician knows the structure of the

57Perceptions of the norm come from the world external to the experiment. If we believed
that individuals completely internalized the experiment, then we could impose an additional
equilibrium condition on the norm. This belief, however, which we would require for observa-
tions of real social phenomena, is unnatural for the lab. Here is an example of how, by not
being able to control the frame, the laboratory setting introduces additional noise not present
in the world.
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game, but sees only transfers ωo and ωe. The econometricians task is to esti-
mate the type distribution, thereby pinning down the relative importance of the
different motivations for the transfer of money in the population of experimental
subjects.

It is easy to see in this framework how identification problems arise.
First, suppose that the type distributions are such that all decisions are inte-
rior.58 The first order condition requires that u′e(ωe,ωo) = 0, and so

ωe = −δ̄+ (γ̄+ ᾱ)ωo + ν

and it is clear that while the marginal rate of substitution between monetary
reward and conformity can be identified from the trustee’s behavior, the social
norm and marginal rate of substitution between altruism or trustworthiness
and conformity cannot. One might argue that this is due to the excessive sim-
plicity of the structural assumptions. A more natural assumption might be to
assume that the norm is affine rather than linear. This introduces another pa-
rameter, and the consequence is that the marginal rate of substitution between
private return and conformity can no longer be identified either. Another pos-
sibility is to assume, for instance, that the norm is linear while trustworthiness
is quadratic. This is no less arbitrary than our linear assumption, and leads
to a mismatch between norm and equilibrium strategy which is in some sense
more severe than the present model, since the equilibrium strategy would be
quadratic in received transfers while the social norm is presumed to be linear.

The trustee’s behavior does not exhaust the possibilities for identifica-
tion. The trustor knows the parameter values that the econometrician does
not, and they are payoff-relevant for the trustor’s decision. This, unfortunately,
does not help. The trustor’s optimal strategy is

ωo =
ρ − 1 + γ̄+ ᾱ

ψ
+ η

(recall that we have assumed that we are in a region of To ×Te where the right-
hand side is positive), and no additional information is revealed that allows for
distinguishing ᾱ from γ̄. It is possible however, that variation in the initial stakes

58The set of parameters for which this will be true has a non-empty interior. We do not
derive it here, but it is worth noting that sufficient conditions involve both trustor and trustee
parameters, since if ωo = 0, then of necessity ωe = 0.
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provided to the trustor and the rate of return on the transfer to the trustee could
lead to additional identifying restrictions on the distributions of both trustor and
trustee type distributions.

The constraint that equilibrium is interior is severe, and one might sus-
pect that relaxing it may introduce non-linearities which may help with identifi-
cation. Here the blessings are mixed. On the one hand, there is no hope for
non-parametric identification, because the conditional means of the parame-
ters given that one is in that set of parameters where the transfer is positive is
still not identified. On the other hand, we have checked in several examples
that with enough parametric assumptions, point identification can be achieved.

The model just developed addresses particular behavioral hypotheses,
and makes particular assumptions about subjects preferences and behaviors.
Other natural behavioral hypotheses can be addressed with different game
theoretic models, and these models may offer different opportunities for identi-
fication of population types. Levine (1998) for instance, evaluates experimen-
tal data for ultimatum games and voluntary contribution games, among others,
from the perspective of a model where one player’s utility depends explicity
on the type of the other rather than just through the other’s action. One can
see in his games that the hypothesis of equilibrium play and beliefs provides
significant identifying power. It should be clear, however, that identification is
a non-trivial matter, and that using exercises like this to inform the design of
laboratory experiments as well as the analysis of the data, might lead to more
convincing experimental research. In particular, experimental design should
be informed by what game it has the subjects play, what kinds of preferences
they could be expected to hold, what will be determined by the experience they
gain as they learn to play the game, and what is uncontrolled and comes from
external frames of reference.

Although the application of equilibrium theory to experimental games
holds some promise for the design of economists’ identification strategies, lab-
oratory experiments with experienced subjects face additional problems. Chief
among them is the problem of external validity. For example, do the results of
a private contribution public goods experiment actually say something about
charitable giving?
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ii. quasi-experiments

Other authors have focused on changes in group composition whose purpose
was not to study social interactions but whose structure is potentially informa-
tive of their presence. One well-cited example is Angrist and Lang (2004),
which focuses on Boston’s Metropolitan Council for Educational Opportuni-
ties (METCO).59 This is a voluntary desegregation program that involves en-
rolling underprivileged inner city children in suburban public schools. Angrist
and Lang (2004) show that the receiving school districts, which have higher
mean academic performance than the sending ones, do experience a mean
decrease due to the program. However, they also show that the interactions
are merely compositional in that there is little evidence of statistically signifi-
cant interactions of METCO students on their non-METCO classmates. Their
analysis with micro-data from one receiving district (Brookline, Massachusetts)
generally confirms this finding, but also produces some evidence of negative
interactions on minority students in the receiving district. Since METCO is a
voluntary program for both sides and thus involves self-selection both at the
individual and at the receiving end, at best it can be thought of as uncovering
treatment on the treated, which does not translate naturally into claims about
social interactions per se for reasons we will discuss in detail below in the next
subsection.

iii. Moving to Opportunity

There exists one intervention in group formation that has been implemented on
a large scale in order to understand social interactions. Interest in understand-
ing the effects of poor neighborhoods on their residents led the Department
of Housing and Urban Development to implement the Moving to Opportunity
(MTO) demonstration in Baltimore, Boston, Chicago, Los Angeles and New
York, starting in 1994.60 The program provided housing vouchers to a ran-

59Another prominent study of this type is Sacerdote (2001). See Durlauf and Ioannides
(2010) for some assessment of its information content with respect to social interactions.

60One reason why HUD implemented the MTO demonstration was that there was a prior
program in the Chicago area that had found large effects from moves from inner city pub-
lic housing to more affluent suburbs of the city. The Gautreaux program, named after the
lead plaintiff in a law suit against the Chicago Housing Authority dating from 1967, led to the
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domly selected group of families from among residents of high-poverty public
housing projects. Within this subsidized group, families in turn were randomly
allocated between two subgroups: one which received unrestricted vouch-
ers; and another which received vouchers that could only be used in census
tracts with poverty rates below 10% (these users are termed the experimental
group). Members of the experimental group also received relocation counsel-
ing. The presence of both unrestricted and restricted voucher recipients is a
nice feature of the demonstration.

The data from the MTO program have been used to study social inter-
actions in what now amounts to a large number of studies. Goering and Feins
(2003) is a compendium of results for the different program sites. Briggs, Pop-
kin, and Goering (2010) is the most recent overview of the demonstration and
is of interest not only because of its statistical evidence but because it focuses
on qualitative information such as interviews to understand the specific mech-
anisms associated with program effects. In terms of the scholarly literature,
Kling, Liebman, and Katz (2007) represents the most comprehensive analysis
both in terms of its methodology and because of its coverage of all the study
sites. Earlier analyses include Ludwig, Duncan, and Hirschfield (2001) and
Kling, Ludwig, and Katz (2005). As most clearly articulated in Kling, Liebman
and Katz, social interactions are inferred from MTO studies when evidence is
found that movement of families from high poverty to low poverty neighbor-
hoods is associated with changes in various socioeconomic outcomes. The
MTO demonstration has collected data on outcomes ranging from health to

movement of some public housing families in Chicago to other parts of the city whereas other
families moved to nearby suburbs. Sociologist James Rosenbaum is responsible for the con-
struction of data sets of the families that participated in the Gautreaux program and initiated
use of these data to study neighborhood effects. Rosenbaum (1995) is a good overview of
Gautreaux findings, which found that families who moved to suburbs exceeded those who
stayed in Chicago for a broad range of socioeconomic outcomes. For example, the percent-
age of college attendees among children who families moved to suburbs was 54% whereas
the percentage for children whose families moved to other locations in Chicago was 21%;
when one considers only 4-year colleges the attendance rates are 27% and 4% respectively.
As Rosenbaum and other students of the Gautreaux data are well aware, there are prob-
lems with the data that delimit how informative they are with respect to social interactions.
Information about families who moved to suburbs and then returned to the city is missing, so
comparisons of city and suburban families at the time the data were collected suffers from
self-selection problems. Self-selection was also present in the initial set of families who par-
ticipated in the program, as the program was restricted to families that had good track records
of public housing upkeep. MTO was explicitly designed to avoid these problems.
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education to employment. Focusing on Kling, Ludwig, and Katz, calculations
of social interaction effects are derivative from calculations of treatment ef-
fects associated with the vouchers. These authors are careful to distinguish
between measures of the effects of intent to treat and treatment on the treated,
corresponding to the treatment effects associated with eligibility for a voucher
and use of the voucher respectively.

Overall, Kling, Liebman, and Katz (2007) do not find that residence in
low poverty neighborhoods had particularly strong effects on families. This is
so even though the housing voucher randomization resulted in families with
similar observable characteristics living in very different neighborhoods. For
adults, there is little evidence that movement to low poverty neighborhoods
affected economic self-sufficiency as measured across several criteria. The
strongest effects suggest that lower poverty neighborhoods are associated
with better mental health. For children, lower poverty neighborhoods appear
to benefit teenage girls for outcomes ranging from education to risky behavior
to physical health. In contrast, teenage boys seem to be adversely affected
by relocation to a lower poverty neighborhood. While there was deterioration
along a number of outcomes, increases in criminal behavior by the teenage
boys was particularly noteworthy. While other authors are more sanguine in
their reading of the findings from the MTO demonstration, it is difficult to con-
clude from the body of empirical work that the movement of poor families to
more affluent neighborhoods did much to improve overall socioeconomic out-
comes.

Durlauf and Ioannides (2010) discuss some of the difficulties in draw-
ing policy conclusions from the MTO data. For the purposes of this chapter,
the relevant question is the extent to which the MTO findings speak to the
empirical salience of social interactions. While at first glance, it would seem
the unimpressive evidence of treatment effects from the low poverty neighbor-
hood vouchers speaks against the importance of neighborhood social interac-
tion effects, such a conclusion is questionable. The basic problem concerns
the mapping from treatment effects that have been estimated from the MTO
data and social interactions mechanisms. Moving a family from a high to low
poverty neighborhood means that a range of neighborhood characteristics be-
yond the aggregate poverty rate are changed. For example, while low poverty
neighborhoods might provide “better” role models from high poverty ones, they
will also be associated with weaker social ties, friendships, proximity to rela-
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tives and the like. Movements from high to low poverty neighborhoods can-
not be facilely equated with movements from worse to better neighborhoods.
These moves represent changes in a vector of neighborhood characteristics
that constitute types of social interactions. There is no reason to think that
the moves observed in the MTO study did not constitute a tradeoff of some
elements of this vector for others.

This problem does not merely provide a reason why certain treatment
effects can be small in the presence of large social interaction effects, but
indicates why the interpretation of strong treatment effects as evidence of so-
cial interactions is problematic. One example is discussed by Kling, Liebman
and Katz: the reduction in asthma among children who move to low poverty
neighborhoods. One reason this may occur is due to stress reduction. To
the extent this is generated by neighborhood characteristics this is reasonably
a social interaction effect. Another reason for lower asthma rates, however,
could be reduced exposure to vermin infestations, which in turn could be a
consequence of changes in housing quality induced by the requirement that
the vouchers were used in low poverty neighborhoods. This is not a social
interactions effect.

These considerations suggest that an important next step in the study
of MTO data is an explicit consideration of how the data can be directly em-
ployed to evaluate social interaction effects. This may involve the development
of measures of “social interactions-relevant treatment effects” which contrast
with the standard treatment effect measures that economists use; such a de-
velopment would parallel the work on policy-relevant treatment effects of Heck-
man and Vytlacil (2001). For example, the issue of self-selection in voucher
use (less than a quarter of eligible families took up the restricted voucher) is a
nuisance from the perspective of some treatment effect calculations, but may
be informative in terms of social interactions, for reasons we have discussed
in the context of the linear in means model and elsewhere.61 These sugges-
tions are admittedly speculative, though we note that this is the flip side of the
analysis in Manski (2010) who argues that certain types of treatment effects
may be identified without full knowledge of social interactions structure.

To be clear, the body of existing MTO studies is of great importance in
thinking about alternative policies. One example that is suggested by the find-

61This may suggest new uses for the Gautreaux data as well.
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ings in Kling, Liebman and Katz is the distinction between efforts to promote
socioeconomic integration of neighborhoods versus effects to reduce poverty
rates in the least affluent neighborhoods. Kling, Liebman, and Katz find that
changes in neighborhood poverty rates are responsible for those MTO voucher
effects they do find as opposed to moves per se, hence the suggestion that
it might make more sense to lower poverty rates in currently poor neighbor-
hoods than to promote general socioeconomic integration. Our criticisms only
apply to the extent to which claims about the significance of social interac-
tions are made based upon the calculations that have appeared. To return
to our argument, the finding that, conditional on poverty rate changes, moves
had no positive effects does not speak to the magnitude of social interaction
effects that are uncorrelated with poverty levels, which presumably included
social features such as friendship ties that were damaged by the moves to
more affluent communities.

7 Suggestions for future directions

In this section we suggest some new directions we regard as promising in
developing a full econometrics of social interactions.

i. measurement

The empirical literature on social interactions suffers from serious measure-
ment problems. This is a first important area that needs new econometric
work. Here we follow the discussion in Durlauf and Ioannides (2010). Eco-
nomic theory does not dictate the appropriate empirical measures of contex-
tual variables that a researcher ought to use. As a result, one for example
finds Bertrand, Luttmer, and Mullainathan (2000) using the product of wel-
fare usage and own-ethnic group intensity to explain individual welfare usage,
whereas Aizer and Currie (2004) use the utilization rate of an individual’s lan-
guage group to measure social interactions on public prenatal-care utilization.
Similarly, the empirical literature does not typically consider how social vari-
ables should interact with individual decisions, so that linearity assumptions



103

are too often employed without reflection. If the reason why utilization of social
services depends on the usage of others is because of information transmis-
sion, as argued by Bertrand et al., then it is unclear why the percentage of
users is the appropriate variable, as opposed to some nonlinear transforma-
tion, as presumably one only needs one neighbor to provide the information.
While considering this type of problem in studying social interactions in mar-
riage markets, Drewianka (2003) argues that a higher marriage rate in a com-
munity may reduce the propensity of unmarried people to marry as a higher
rate hampers search.

A second measurement problem arises because theory does not pro-
vide guidance as to the appropriate measure of groups. One aspect of this
problem is relatively simple and involves the choice of scale for a given mea-
sure of group; in the case of physical proximity, one finds the use of Zip codes
in Corcoran, Gordon, Laren, and Solon (1992) and census tracts and blocks in
Weinberg, Reagan, and Yankow (2004) to determine neighborhoods. In other
cases, measurement problems involve the categories that define groups. The
study by Conley and Topa (2002) is unusual in seeking to identify the appro-
priate axes on which to situate the actors in social space, finding that ethnicity
is of particular importance in defining social interactions for labor market out-
comes in Chicago. To do this, Conley and Topa construct measures of prox-
imity between neighborhoods based upon physical proximity, ethnic similarity
and socioeconomic similarity to determine which measure best explains corre-
lations in unemployment patterns across neighborhoods, finding that ethnicity
dominates the other measures.

Conley and Topa’s work is an important advance, but follows the liter-
ature in equating group memberships with scalar categories. Typically, cat-
egories are treated as the relevant groups for social interactions. Hence one
sees one body of research that explores the effects of the residential neighbor-
hood in which a person grows up on his adult economic prospects while an-
other explores the effects of friends’ smoking behavior on individual smoking
decisions. Akerlof (1997) argues that social interactions are best understood
as occurring in a social space that may have many dimensions; this follows
naturally when one considers the overlapping interactions of factors such as
physical proximity, ethnicity, gender, and education on the ways in which in-
dividuals interact. One limitation of much of the existing literature is thus the
absence of attention to the multiple groups to which an individual is a member.
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The major exception to this claim is the networks literature, which allows for
differential social connections within a population, but even here, the analysis
does not focus on how categories interact to produce an individual-specific
social environment.

The development of methods for dealing with the proper measurement
of social space represents one of the key outstanding research areas in the
econometrics of social interactions. A few papers have explicitly attempted to
explore multiple channels for social interactions. A nice example is Iyer and
Weeks (2009) who consider the joint roles of ethnicity and geographic proxim-
ity in fertility decisions in Kenya, finding a particularly strong role for ethnicity.
Methodologically, Conley and Topa (2003) is unique in considering the identi-
fication of social interactions when groups are measured with error and when
the relevant group for social interactions is not observable, but some other
grouping which contains the behaviorally relevant group is observable, as may
occur if an analyst knows an agent’s census tract but not his actual neighbor-
hood. They find that measurement error leads to nonidentification. Simulation
evidence suggests that local identification may still be possible when superset
data is available. As Conley and Topa acknowledge, their analysis applies to
a very specific model, so much more research is needed on this question.

Some aspects of measurement problems relating to groups have been
addressed through the development and clever analysis of interesting data
sets. An especially nice example is Mas and Moretti (2009), who employ a
data set that measures supermarket employee productivity in 10-min inter-
vals. Their data set is also impressive because the set of peers for a given
worker regularly changes due to differences in shift composition and because
the spatial orientation of workers in a store is known. This allows for analy-
ses of such questions as whether frequent interactions induce stronger social
interactions and whether physical proximity to others matters. Guryan, Kroft,
and Notowidigdo (2009) follow a similar strategy using data on performance in
golf tournaments but find little evidence of social interactions. These types of
data sets, in our view, provide clean ways of describing social space, but are of
course limited in terms of the extent to which their findings may be extrapolated
to alternative environments.
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ii. social interactions and prices

Most social interactions work has ignored the informational content of prices
for group membership. For example, social interactions of residential neigh-
borhoods will be reflected in housing prices, via standard hedonic price ar-
guments. Nesheim (2002) is a pioneering advance in this regard, social in-
teraction effects, measured as averages of parental characteristics, can be
extracted from housing prices using hedonic pricing methods. Implementation
of Nesheim’s approach is facilitated when assumptions are made to allow an
explicit solution for the hedonic price in terms of neighborhood characteris-
tics; see Ioannides (2008) for a very straightforward way of doing this. So far,
Nesheim’s methods have not received the empirical attention they warrant.
Bayer, Ferreira, and McMillan (2007) report some nonstructural hedonic re-
gressions of housing prices on neighborhood characteristics. See also Bayer
and Ross (2009) who propose using neighborhood prices to construct a con-
trol function to proxy for unobserved neighborhood characteristics.

iii. group characteristics as evidence of social interactions

Another dimension along which endogenous group formation can be used to
provide evidence of social interactions is the equilibrium distribution of types
across groups. The informational content of this distribution was first recog-
nized in the context of racial discrimination in Becker (1971). Becker showed
that taste-based discrimination may not manifest itself in black white wage dif-
ferences but rather in segregation of a subset of firms. Analogous reasoning
applies in social interactions contexts. Models such as Bénabou (1993, 1996)
and Durlauf (1996a,b) emphasize how social interactions can produce strat-
ification of neighborhoods by income; work such as Epple and Sieg (1999)
and Calabrese, Epple, Romer, and Sieg (2006) show how these types of ef-
fects can be incorporated into sophisticated models of locational choice; the
latter paper is of particular interest since social interactions are essential to
the analysis. Yet another context where group compositions are informative
about interactions concerns assortative matching, where as discussed above,
following Becker (1973), supermodularity in production functions can produce
efficient stratification of firms by ability. In general, the tight relationship be-
tween supermodularity and stratification (see Durlauf and Seshadri (2003) and
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Prat (2002) for examples of a tight supermodularity/stratification link for payoff
functions other than those studied by Becker as well as for some caveats) has
been underutilized as a strategy for uncovering social interactions. We believe
that group composition represents a potentially powerful source of evidence
on social interactions.

Card, Mas, and Rothstein (2008) can be interpreted as using group
composition to uncover social interactions. The objective of their analysis is
to assess the empirical salience of the classic Schelling (1971) tipping point
model of segregation. Schelling’s analysis assumes that there is a threshold
value for the percentage of blacks in a community such that whites will move
when the threshold is exceeded, generating rapid segregation. Card et al.
study the time series of neighborhood racial compositions across the United
States and find evidence of break points in the series that are consistent with
the predictions of the Schelling model. In our view, this represents partial
identification evidence on the effects of neighborhood racial composition on
individual utility. What is important from the perspective of our discussion is
that the Card et al. evidence derives entirely from group composition.62

iv. joint modeling of group memberships and behaviors

Our discussion of prices and group characteristics as sources of information
on social interactions suggests yet another direction for new research: the joint
modeling of group memberships and behavioral choices as facets of a general
decision problem. Brock and Durlauf (2006) give an example of this perspec-
tive using a logit framework; we borrow heavily from their original presentation.
The basic idea of this approach is to model individuals as making joint choices
of group memberships, g ∈ {0, ...G − 1}, and behaviors, l ∈ {0, ...L − 1}. Group
choices are denoted as δi while ωi continues to denote the behavioral choice.
This joint decision is sequential as groups are chosen first and then behaviors
are chosen once groups form; this particular sequencing renders the model

62The nonlinear model estimated in Easterly (2009), which leads him to argue that the
Schelling model does not explain the global dynamics of segregation in the US, is also consis-
tent with the presence of social interaction effects in terms of preferences over neighborhood
racial composition, although it not clear that the model provides affirmative evidence of these
effects that is as strong as found in Card et al.
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mathematically equivalent to a standard nested logit model (Ben Akiva (1973)
and McFadden (1978)) with the exception of the presence of endogenous so-
cial interactions.

The sequential logit structure ensures that choice probabilities at both
stages have a multinomial logit probability structure. Defining hilg = kl + clxi +
dlyg, the behavioral choices conditional on a group choice g will be defined by
the probabilities

µ
(
ωig = l̄

∣∣∣(hilg, pe
ilg)

L−1
l=0

)
=

exp β(hilg + Jpe
ilg)∑

m exp β(himg + Jpe
img)

. (77)

Group choices reflect the fact that choices in the stage will produce utility in
the fashion of our original multinomial choice model. This is operationalized
by making the group choice probabilities depend on the expected utility of
the choice ωi will produce in the second stage. Letting δi = g code for the
choice of group by individual i, these choices are also assumed to exhibit a
logit structure:

µ
(
δi = ḡ

∣∣∣(hilg, pe
ilg)

L−1 G−1
l=0 g=0

)
=

exp βGZiḡ∑
g exp βGZig

(78)

where βG denotes the heterogeneity parameter for the unobservable shocks
associated with group choices and

Zig = E
{

max
l
(hilg + Hpe

ilg + εilg)
∣∣∣(hilg, pe

ilg)
L−1
l=0

}
.

Implicit in equation (78) is the existence of unobservable location-specific utility
terms that are irrelevant with respect to the utility of a choice once the group
is formed. A standard result is that63

E
{

max
l
(hilg + Hpe

ilg + εilg)
∣∣∣(hilg, pe

ilg)
L−1
l=0

}
=

β−1 log
(∑

i

exp β(hilg + Jpe
ilg

)
. (79)

63See, for example, Anderson, de Palma, and Thisse (1992, p. 46).
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Equation (79), together with equations (77) and (78) produce a joint probability
description of group memberships and behaviors

µ
(
ωiḡ = l̄, δi = ḡ

∣∣∣(hilg, pe
ilg)

L−1 G−1
l=0 g=0

)
=

exp
(
βGβ

−1 log
(∑

l exp β(hilḡ + Jpe
ilḡ)

))
∑

g exp
(
βGβ−1 log

(∑
l exp β(hilg + Jpe

ilg)
)) · exp β(hil̄ḡ + Jpe

il̄ḡ
)∑

l exp β(hilḡ + Jpe
ilḡ)

. (80)

As is well known, the compatibility of the nested logit structure (80) with an
explicit utility maximization problem requires conditions on the parameters.64

One condition that ensures compatibility with a well posed maximization prob-
lem is βG ≤ β (McFadden, 1978, pp.86–7). This condition requires that the
dispersion of random payoff terms across groups is greater than the disper-
sion in random payoff terms across behavioral choices within a group. We
close the model with the equilibrium condition: For all i, l and g, pe

ilg = plg,
which links the choices at the two levels.

Models of this type have yet to be analyzed either in terms of their the-
oretical properties or in terms of identification. We believe models of this type
can prove to be a valuable complement to existing social interactions models.
For example, the sequential choice structure introduces a new mechanism by
which multiple equilibria may emerge, namely the influence of beliefs about
group behaviors on group memberships, which reciprocally will affect behav-
iors. The presence of these types of multiple equilibria can, we believe, provide
information on identification. More generally, the sort of probability structure
we have described integrates group memberships and individual behaviors in
a way analogous to what we referred to as the Becker view of discrimination,
in which wages and firm composition are affected by the existence of taste-
based discriminators. Our strong conjecture is that this joint modeling will
produce new routes to identification.

This discussion also suggests that work to integrate the evolution of so-
cial networks with choices in networks may produce valuable insights. Copic,
Jackson, and Kirman (2009) is a rare example in economics of the develop-
ment of likelihood methods to describe network structure. The sort of coupling
we have described for group and behavior choices in the nested logit context
should be explored using this type of approach.

64See McFadden (1978) and Börsch-Supan (1990).
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v. transition dynamics versus steady-state behavior

A final research direction we believe can prove to be important concerns the
use of transitional behavior to uncover social interactions. The linear in means
and discrete choice models look at steady state behaviors in the sense that
these systems, including their dynamic analogs, conceptualize the data as
drawn from their associated invariant measures. While the duration models
we describe, especially that of de Paula (2009), focus on transitions in a popu-
lation, there has yet to be much systematic exploration of the evidence on so-
cial interactions that may be found in transitional dynamics versus steady state
behavior. By analogy, the steady state distribution of disease rates across lo-
cations in a region will not speak to the contagion mechanism for the disease
in the way that would data on the transition of the disease across locations.

Brock and Durlauf (2010) provide an example of how transition dynam-
ics can produce evidence of social interactions. They consider a population of
perfect foresight actors who, in continuous time, are deciding whether to adopt
a new technology. The cost of the new technology is falling over time. The
payoff to adoption is the present discounted value of payoff from the time of
adoption. The payoff to adoption is increasing in the fraction of the population
that has adopted. Agents are indexed by a scalar x, in which the payoff func-
tion is strictly increasing. Data are restricted to q(t), the adoption curve for
the technology, i.e. the fraction of the population that has adopted as of time t,
and fx, the cross sectional density of x . Brock and Durlauf consider the case
where the distribution of types among adopters at each t is unknown as well
as the case where the distribution of types among adopters is known at each t.

From the perspective of steady state behavior, there is nothing that
can be learned about social interactions; the steady state data will consist
of an adoption rate for the population as well as a cutoff value x such that
agents with xi < x have not adopted while other agents have adopted. Such
an observation is fully consistent with individual payoffs being independent
of the adoption decisions of others. However, the full adoption curve, which
represents the transition dynamics for the steady state adoption rate, can be
informative about social interactions. For example, even if fx is unobservable,
q(t) can be informative about social interactions. Brock and Durlauf show that
if one is willing to assume that fx contains some mass points, discontinuities
in q(t) can only occur because of endogenous social interactions. This does



110

not follow because of multiple equilibria as occurred in the partial identification
results under primary choice. Rather it follows from the fact that since higher
x types who have not yet adopted always have a greater incentive to adopt
than lower x types, even though the population fraction of the lower x types is
larger, self-consistent bunching can occur at particular t values; intuitively, at
these jump points the lowest x will meet the first order condition for adoption
with equality whereas all others do not.65

Brock and Durlauf (2010) also consider a case where x is a vector
consisting of an observed variable x1 and an unobserved variable x2. For
conditional adoption curves q(t|x1), social interactions can produce pattern
reversals where lower x1 types adopt before higher x1 types. A condition such
as stochastic dominance of the conditional density of x2 given x1 is needed
for this type of observation to represent evidence of social interactions. As
such, the Brock and Durlauf results are another example of how delineation of
a complete economic environment can allow for partial identification of social
interactions under what appear to be modest assumptions. Arguments of their
type can be taken further, as is done in Young (2010), which we discuss next.

vi. microfoundations

A final area that warrants far more research is the microfoundations of social
interactions. In the econometrics literature, contextual and endogenous social
interactions are defined in terms of types of variables rather than via particular
mechanisms. This can delimit the utility of the models we have, for example,
if the particular mechanisms have different policy implications. Put differently,
the current generation of social interactions models focuses on a relatively
crude division of social interactions between factors that are predetermined
and those that are contemporaneous; while one can rationalize this division
as structural, this is only true by assumption; work in evolutionary game the-
ory, for example, has a much more subtle view of how endogenous interac-
tions arise. Young (2010) is an important next step in the social interactions

65The possibility that social interactions could induce discontinuity in adoption curves was
first recognized in a relatively neglected paper by Cabral (1990). Differences in the economic
environments studied by Cabral and Brock and Durlauf are discussed in the latter. That said
Cabral has priority in discovering the qualitative finding.
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research program as it explicitly studies the different empirical implications
of alternate social interactions mechanisms. Young derives implications for
aggregate behavior by considering where the social interaction comes from.
Behavioral economists may be interested in individual behaviors for their own
sake, but Young demonstrates here that particular features of the process gen-
erating the social interaction determine aggregate behavior, and it raises the
prospect that microeconomic and behavioral hypotheses about where social
interactions come from may be identifiable from aggregate data.

Young writes on identification of types of social interactions in diffusion
processes from a theoretical perspective. He examines different diffusion mod-
els in a rather general large-population setting. The different explanations, in-
ertia, contagion, social influence and social learning, are sets of assumptions
about individual behaviors. The outcome of the analysis is a set of distinct
properties of the diffusion curve, a system aggregate, an emergent property of
the system.66 Inertia is the hypothesis that individuals learn privately, but delay
in making their decision. He supposes that each individual i in the (continuum)
population can be characterized by a switch rate, λi, which is independent of
the numbers and identities of those who have already switched. Young shows
that no matter the distribution of the λi, the adoption curve must be concave.
Contagion is a process wherein a given individual adopts when she sees an
instance of the innovation, or hears about it. Perhaps the most famous model
of this kind is the Bass (1969) model of new product adoption. In these mod-
els the instantaneous rate at which an individual adopts will depend upon the
size of the pool of current adopters. Adoption curves derived from contagion
models will be S -shaped, and under some reasonable assumptions, it must
decelerate when the pool of adopters exceeds 1/2 the population. Social in-
fluence models are threshold models. Each individual has a threshold ri. If
the adopting pool contains fraction ri of the population, then individual i will
adopt. Under some mild assumptions, the adoption process either initially de-
celerates or it accelerates at a super-exponential rate over some time interval.

There are many ways to build social learning models, and Young’s main
point is that details matter. Nonetheless, for an interesting class of social learn-

66Emergent properties of dynamical systems are properties or structural features that occur
on scales of aggregation or temporal scales which are different from those of the rules defining
the system. See Blume and Durlauf (2001) for discussion of emergence in socioeconomic
environments.
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ing models he shows that diffusion must initially decelerate, but that the rate
of diffusion relative to the pool of potential adoptees increases. Under some
additional assumptions, Young can show that if the process begins to accel-
erate, it does so at a super-exponential rate. Thus Young’s work suggests
strategies for nonparametric identification of the different behavioral models
he considers. What happens when the different behavioral models are mixed
in the population, and how to build empirical models that would reflect Young’s
identifying structural features, are still open questions.

8 Conclusions

As this chapter has demonstrated, a wide range of identification strategies for
uncovering empirical evidence of social interactions are available to empirical
workers. These approaches range across linear and nonlinear models, cross-
section and time series data, and involve a remarkably broad range of portfo-
lios of assumptions. The existing set of identification results thus does not lend
itself to any straightforward summary. Rather, the body of arguments we have
described represent different approaches to producing evidence of social in-
teractions at two levels. First, under “ideal” assumptions with respect to unob-
served heterogeneity, identification questions revolve around the disentangling
of types of social interaction effects: contextual versus endogenous. Second,
under more realistic specifications of unobserved heterogeneity, i.e. grouped
individual-level heterogeneity as emerges from endogenous group formation
and group-level heterogeneity that is not related to social interactions, iden-
tification involves the question of whether any evidence may be adduced for
social interactions, let alone whether the specific type of social interaction is
recoverable from the observed data.

One way to understand the many methods we have described is that
they represent points along an “assumptions/possibilities” frontier. As is true
throughout economics, there is a tradeoff between the strength of assump-
tions made prior to empirical analysis and the precision of the empirical claims
that follow. And the types of assumptions we have described, whether they
represent restrictions on the probability structure of unobservable stochastic
processes or substantive assumptions about individual behavior, can never be
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expected to hold literally. This should not jaundice the consumers of empir-
ical work on social interactions any more than it should affect consumers of
other types of empirical social science. Scientific progress, arises from the
interaction of a priori beliefs, data and logical reasoning. We therefore re-
gard the interplay of economic theory, econometrics and empirical work as all
necessary ingredients in understanding the social determinants of individual
behavior.

It is no disparagement, therefore, to the science of Human Na-
ture, that those of its general propositions which descend suffi-
ciently into detail to serve as a foundation for predicting phenom-
ena in the concrete, are for the most part only approximately true.
But in order to give a genuinely scientific character to the study,
it is indispensable that these approximate generalizations, which
in themselves would only amount to the lowest kind of empirical
laws, should be connected deductively with the laws of nature
from which they result; should be resolved into the properties of
the causes on which the phenomena depend. In other words, the
science of Human Nature may be said to exist, in proportion as
the approximate truths, which compose a practical knowledge of
mankind, can be exhibited as corollaries from the universal laws
of human nature on which they rest; whereby the proper limits
of those approximate truths would be shown, and we should be
enabled to deduce others for any new state of circumstances, in
anticipation of specific experiences.

John Stuart Mill, A System of Logic (1859)67

67Collected Works of John Stuart Mill, J. Robson ed. Indianapolis: Liberty Fund Press.
Book VI, chapter iii, section 2, pp. 847-848.
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A1 Derivation and analysis of equilibria in the
linear in means model

i. structure

The linear-in-means model can be derived simply as the unique Bayes-Nash
equilibrium of a game in which each individual’s choice is determined by a
private benefit and a conformity benefit. Not surprisingly, the utility functions
are quadratic, and the conformity benefit is modeled as linearly decreasing in
the quadratic deviation of an individual’s choice from the average behavior of
all other players. Individuals belong to a common group g of size ng. Group
membership is exogenous. An individual’s realized utility depends upon his
own choice and the choices of others. Preferences are expected utility, and
are of the form

ui(ωig,ω−ig) = θigωig −
ω2

ig

2
−
φ

2
E((ωig − ω̄−ig)

2) (81)

where ω̄−ig = (ng − 1)−1 ∑
j,i ω jg is the average choice of the others in g. The

individual marginal benefit θig can be linearly decomposed as follows:

θig = χ0 + χ1xi + χ2yg + εi + fg (82)

where xi and εi are observable and unobservable individual characteristics
and yg is a vector of observable group characteristics and fg is a group charac-
teristic observable to all individuals in the group but unobservable to the econo-
metrician. The determination of individual choices is a game of incomplete in-
formation, since each individual, and only that individual, observes εi. (Group
characteristics unobservable to individual group members are irrelevant to
choices as this model exhibits certainty equivalence in individual choices.)
The εi elements are i.i.d. draws from a distribution on the real line R with
mean 0. For expositional purposes it will be useful to write θig = γi + γg + εi
where γg = χ0 + χ2yg + fg is the internally (to the actors) observable group
contribution to the marginal utility of ωi, and γi = χ1xi, the externally (to the
econometrician) observable contribution to marginal utility of an individual’s
characteristics.
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ii. existence of equilibrium

In a Bayes-Nash equilibrium, each individual maximizes expected utility, taking
the expectation on ω̄−ig with respect to his belief distribution, and all belief
distributions will be correct. The first-order condition for individual i is

γg + γi + εi − φ(ωig − Eω̄−ig) −ωig = 0,

and so
ωig =

1
φ+ 1

γg +
1

φ+ 1
γi +

φ

φ+ 1
Eω̄−ig +

1
φ+ 1

εi

=
χ0

φ+ 1
+

χ1

φ+ 1
xi +

1
φ+ 1

fg +
χ2

φ+ 1
yg+

φ

φ+ 1
E(ω̄−ig) +

1
φ+ 1

εi

(83)

This equation justifies (6) when there is no group level unobservable and (30)
when there is such an unobservable, since the coefficients in (6) and (30) are
proportional to those in (83), assuming that an equilibrium exists. Notice that
the shock in (83), (φ+ 1)−1εi, has a variance that is affected by the strength
of the conformity parameter.

We find an equilibrium by positing a functional form with undetermined
coefficients, and then solving for the coefficients to make the beliefs correct. It
will be convenient to define γ̄−ig = (ng − 1)−1 ∑

j,i γ j to be the mean observ-
able type component in the population. This is simply a sample mean. We
suppose that for each individual j,

ω jg = Aγg + Bγ j +Cγ̄− jg + Dε j + F (84)

We derive consistency of beliefs by assuming all individuals other than indi-
vidual i are choosing according to this functional form, computing the best
response for individual i, seeing that it is of this linear form, and then solv-
ing for the coefficient values such that A through F are common through the
entire population. We compute the best response simply by deriving an ex-
pression for ω̄−ig by substituting from equation (84) into equation (83). After
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some algebra one can show that the coefficients in (84) must fulfill

A =
1 + φA
φ+ 1

, B =
1 + C

ng−1

φ+ 1
, C =

φ(B +
ng−2
ng−1C)

φ+ 1
,

D =
1

φ+ 1
, F =

φF
φ+ 1

.

Solving these equations gives the values of the undetermined coefficients.
Thus

ωig = γg +
ng − 1 + φ

(φ+ 1)ng − 1
γi +

φ(ng − 1)
(φ+ 1)ng − 1

γ̄−ig +
1

φ − 1
εi (85)

When the population size is large, this is approximately

ωig = γg +
1

φ+ 1
γi +

φ

φ+ 1
γ̄g +

1
φ − 1

εi (86)

where γ̄g is the group-level average of γi.68 Recalling the definitions of the γ
terms,

ωig = χ0 + χ2yg + fg +
χ1

φ+ 1
xi +

φχ1

φ+ 1
x̄g +

1
φ+ 1

εi

where x̄g is the group mean of the individual characteristics. This expression
corresponds to the reduced form equation (11) in the text when there is no
group-level unobservable. Extending the model in this and a variety of other
ways to match the other specifications discussed in section 3 is straightfor-
ward.

iii. uniqueness of Bayes-Nash equilibrium

A strategy for player i is a map fi(γg, γi, γ−ig, εi) 7→ R, where γ−ig = (γ j) j,i.
The preceding section demonstrates the existence of a symmetric Bayes-Nash
equilibrium with linear strategies. Discrete-choice models of social interaction
are replete with multiple equilibria, so one might believe that multiple equilibria
may arise here as well. This is not the case.

68Note that γ̄g is different from γg, which is the direct group marginal utility contribution for
an individual’s choice.
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Theorem A.1. Uniqueness of equilibrium in the linear in means model.
The Bayes Nash equilibrium strategy for the model (81) and (82), and defined
by (83), is unique.

Proof. Equation (83) implies that ( f ∗1 , . . . , f ∗ng
) is a symmetric Bayes Nash-

equilibrium if and only if for all i,

f ∗i (γg, γi, γ−ig, εi) =
1

φ+ 1
(γg + γi + εi)+

φ

φ+ 1
1

ng − 1

∑
j,i

E
(

f ∗j (γg, γ j, γ− jg, ε j)
)

Let Bi denote the set of measurable functions fi : (γg, γi, γ−ig, εi) 7→ ωi and let
B denote the product of the Bi. Define the operator T : B→ B such that

T ( f1, . . . , fng)i(γg, γi, γ−ig, εi) =
1

φ+ 1
(γg + γi + εi)+

φ

φ+ 1
1

ng − 1

∑
j,i

E( f j(γg, γ j, γ− jg, ε j)) .

A strategy profile ( f ∗1 , . . . , f ∗n ) is a (not necessarily symmetric) Bayes-Nash
equilibrium if and only if it is a fixed point of T . A straightforward calculation
shows that T is a contraction mapping. At any point (γg, γ1g, . . . , γngg, εi),

|(T f )i − (Tg)i| =
φ

φ+ 1
1

ng − 1

∣∣∣∣∣∑
j,i

E
(

f j(γg, γ j, γ− jg, ε j)
)

− E
(
g j(γg, γ j, γ− jg, ε j)

) ∣∣∣∣∣
≤

φ

φ+ 1
|| f − g||∞ .

Since T is a contraction, it has a unique fixed point, and so equilibrium is
unique. �
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A2 Proof of theorems 3, 4, 5 and 7 on social net-
works

For exclusive averaging Bramoullé, Djebbari, and Fortin (2009) have already
proven that if the network is the union of groups, then I, A and A2 are linearly
dependent if and only if groups are all the same size. They also have shown
that if the network is transitive and contains no groups, then A2 = 0. All we
need to show is that linear dependence implies transitivity, and that transitivity
implies that the network is the union of weakly connected components each
of which either has A2 = 0 or is a group. For inclusive averaging we simply
replicate the entire program.

We begin with an elaboration of theorem 4 which does not depend on
how the weighted adjacency matrix is assembled. The proof of this theorem,
when combined with theorem 2, implies theorem 4 in the text. Theorem 2
states that the failure of identification implies that I, A and A2 are linearly de-
pendent. Theorem A.2 states that if these matrices are linearly dependent,
then the network must be transitive. If the network is both transitive and undi-
rected, it must consist of the union of groups. It follows from theorem 2.i that
if the hypothesis of theorem 4 is true, then there are scalars λ0, λ1 and λ2, not
all 0, such that λ0I + λ1A + λ2A2 = 0.

Theorem A.2. Characterization of networks admitting non-identification.
Let (V , E) be a network with a weighted adjacency matrix A such that (I − JA)
is invertible for all values of J. Suppose that λ0I + λ1A + λ2A2 = 0 for some λ
weights not all zero.

i. The network is transitive.

ii. If λ2 = 0, the network is totally disconnected.

iii. If λ2 , 0 and λ1 = 0, with exclusive averaging, the network is the union
of groups of size 2 or, if A2 = 0, the network is bipartite directed. With
inclusive averaging, A = I and the network is totally disconnected.

In all three cases, the network is transitive.

Proof of theorem A.2. If λ2 = 0, then λ0I + λ1A = 0. If λ1 = 0, then λ0 = 0,
contradicting the hypotheses of the theorem. Thus if λ2 = 0, then λ1 , 0 and
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the matrix A is diagonal. With exclusive averaging, λ0 = 0 and A = 0; with
inclusive averaging, λ0 = 1 and A = I. In either case, the network is totally
disconnected (and, in particular, transitive).

If λ2 , 0 and λ1 = 0, there is a scalar γ0 such that A2 = γ0I. With
inclusive averaging, the row sums of A and A2 are both 1, and so γ0 = 1 and
A2 = I. If (i, k) ∈ E and (k, j) ∈ E, then j = i. If not, [A2]i j > 0 for j , i. Since
A is non-negative, A2 = I implies that if i , k and ai j > 0, then a jk = 0. Since
akk > 0 for all k, it follows that for i , k, aik = 0. Thus aii = 1, and so A = I.

If λ2 , 0, there are scalars γ0 and γ1 such that A2 = γ0I + γ1A. If
γ1 = 0, then A2 = γ0I. Since the row sums of A and A2 are both 1, γ = 1
and A2 = I. If (i, k) ∈ E and (k, j) ∈ E, then j = i. If not, [A2]i j > 0 for
j , i. For exclusive averaging, aii > 0 if and only if there is a j such that ai j
and a ji are both positive. There can be no isolates since for all i, aii = 0 while
[A2]ii > 0. This social network is a collection of marriages; groups of size 2.
The other possibility is that A2 = 0, which happens if and only if the network
is either a directed bipartite graph (A , 0) or totally disconnected (A = 0).
These graphs are transitive.

If λ2 , 0 and λ1 , 0, then γ1 , 0, and for nodes i , j, [A2]i j = γ1ai j. If
there is path of length 2 from nodes i to j, then [A2]i j > 0, and hence ai j > 0,
so (i, j) ∈ E and the network is transitive. �

We now turn to the proof of theorem 3. The remainder of this appendix ex-
plores the case where λ2 , 0 and λ1 , 0, the case of theorem A.2.iii. Thus
A2 = γ1A + γ0I, with γ1 , 0. To proceed we need some facts about transitive
graphs. (These can be found in many graph theory texts and the proofs are
nearly immediate.) The vertex set V of any graph (V , E) can be written as the
union of strongly connected components (Vg, Eg).

Lemma A.1. If (V , E) is transitive, then
i. If (i, j) ∈ E for some i ∈ Vg and j ∈ Vh, then for all i′ ∈ Vg and j′ ∈ Vh,
(i′, j′) ∈ E.

ii. The relation Vg � Vh iff (i, j) ∈ E for some i ∈ Vg and j ∈ Vh and
Vg , Vh is transitive and asymmetric.
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Assume without loss of generality that the graph contains a single
weakly connected component. We can do this because each weakly con-
nected component corresponds to a block of the block-diagonal matrix A, if
the powers of A are linearly dependent, then the powers of each diagonal
block are too. The facts about transitive networks imply that the matrix A has
the following structure:

A =



Aga,ga Aga,gb · · · Aga,gc

0 Agb,gb · · · Agb,gc

0 0
...

... . . . ...
0 0 · · · Agc,gc

0 0 · · · 0
...

...
...

...


.

Matrix Agx,gy is of size |Vgx | × |Vgy |. With exclusive averaging, each matrix on
the diagonal has 0s on its diagonal, and is strictly positive off it. With inclusive
averaging, diagonal entries are not 0. If a block Agx,gx has only 0 blocks to
its right, there must be a non-zero block above. Finally, for each i, j and k,
ai j = aik, and the row sums are 1.

Proof of theorem 3. First we take up the case of exclusive averaging. γ0 , 0
iff (V , E) is a group of size at least 2. If so, then

Lemma A.2. Assume exclusive averaging.

A2 =
1

|V | − 1
I +
|V | − 2
|V | − 1

A. (87)

Proof of lemma A.2. “If” is a calculation. For the other direction, suppose the
two coefficients are positive. Then [A2]ii = γ0 for all i since aii = 0. Suppose
(V , E) is not a group. There must be a strongly connected component Vh
which is minimal with respect to �, and another strongly connected component
Vg such that Vg � Vh. Members of Vh connect only to themselves, and so the
cardinality of Vh must exceed 1, or else γ0 = 0. For i ∈ Vg and j ∈ Vh,

[A2]ii =
|Vg| − 1|

(|Vg| − 1 + |Vh|+ m)2

[A2] j j =
1

|Vh| − 1
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where m is the number of nodes outside of Vh members of Vg are connected to.
Both of these numbers must equal γ0, and so (|Vg| − 1)(|Vh| − 1) = (|Vg| − 1 +
|Vh| − 1 + m + 1)2, which is impossible. Thus (V , E) is a group, and equation
(87) follows. �

Now we identify the structure for the remaining case, which has γ1 > 0
and γ0 = 0. Note that for a directed bipartite network, A2 = 0.

Lemma A.3. Assume exclusive averaging and that γ0 = 0. Then γ1 > 0, and
the weakly connected component is either a singleton or a directed bipartite
graph.

Proof. From the assumption it follows that An = γn
1A for all n. In particular,

[An]ii = 0 for all i and n. Thus there are no paths that return to their starting
point, and so no path can have length more than |V | − 1. Thus A|V | = 0 and
it follows that γ1 = 0 and A2 = 0. If A = 0, then the weakly connected
component has only one member. If A , 0, all paths are of length 1. The
network is a directed bipartite graph. �

Now we repeat the same exercise for inclusive averaging. Again, as-
sume (V , E) is weakly connected.

Lemma A.4. Assume inclusive averaging. If (V , E) is a group, then A2 = A,
γ1 = 1 and γ0 = 0. If A2 = A and A , 0, then (V , E) is a group.

Proof of Lemma A.4. If (V , E) is a group, then all elements of A are identical
and the row sum is 1. Thus A2 = A, and so forth.

Suppose now that (V , E) is not a group. For each i ∈ V, either i is
influenced by someone, and so

∑
j ai j = 1, or i is influenced by no one, and∑

j ai j = 0. If the weakly connected component is not a group, transitivity of
the graph implies that some node is influenced by no one. One the other hand,
someone who is influenced by no one influences someone, or he would not
be a member of the weakly connected component. Suppose that there is a k
who is not influenced by anyone, and that i is influenced by him then∑

j

[A2]i j =
∑

j

∑
k

aikak j =
∑

k

aik

∑
j

ak j <
∑

k

aik = 1,
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and so A2 , A. �

Lemma A.5. If λ2 , 0, (V , E) is a group.

Proof of lemma A.5. If (V , E) is not a group, each strongly connected compo-
nent is of size 1. If not, and both i and j are in the same component, then

γ0 + γ1aii = [A2]ii = [A2] j j = γ1a j j = γ1aii. (88)

Since aii , 0, γ0 = 0 and γ1 = 1 and so A is a group, which is impossible.
If so, suppose that { j} is minimal with respect to � and that {i} � { j}. Let m
denote the number of other nodes that influence i. Then

[A2]ii =
1

(2 + m)2 = γ0 + γ1
1

2 + m

[A2]i j =
1

(2 + m)2 +
1

2 + m
= γ0 + γ1

1
2 + m

and would imply 0 = 1/(2 + m) which is impossible. �

To complete the proof of theorem 3, consider first the case of exclusive
averaging. If the parameters are not identified, then I, A and A2 are depen-
dent. In particular, the powers of each matrix block corresponding to a given
weakly connected component are dependent. Each component is either a
group, a singleton, or a directed bipartite network. Furthermore, Bramoullé et
al. show that all groups must be the same size. Both singleton components
and directed bipartite networks have individuals who are influenced by no one.
It follows from the proof of Bramoullé et al. proposition 1 that if k , 0, the pa-
rameters are identified if such individuals exist. Consequently, all weakly con-
nected components are groups of a common size, at least 2. Conversely, if all
components are groups of the same size, there are no individuals influenced
by no one, and identification fails according to lemma A.2 and theorem 2.ii.

In the case of inclusive averaging, it follows as before that the relevant
matrix powers are linearly dependent. It follows from lemma A.5 that each
component is either a group or a singleton. A singleton gives identification, so
each component is a group of size at least 2. A calculation shows that the the
groups need not be the same size for the powers of the entire matrix to be lin-
early dependent. Conversely, if all components are groups, then identification
fails according to lemma A.4 and theorem 2.ii. �
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Proof of theorem 5. It suffices to prove the theorem for the open and dense
set of matrices S 1 which are strictly positive. Then λ2 , 0, so write A2 =
γ1A+ γ0I. We need to prove the claim of the theorem for the set S 1 of matrices
that can be written this way. The set S 1 is semi-algebraic and closed. It suffices
to show that S /S 1 is dense.

Consider a matrix A in S , and denote its square by B. Consider matri-
ces of the form A(ε) whose i, j element is a11 + ε for i = j and ai j otherwise.
Then

B(ε)11 = b11 + 2a11ε+ ε2,
B(ε)1 j = b1 j + a1 jε for j , 1,
B(ε)i1 = bi1 + ai1ε for i , 1,
B(ε)i j = bi j otherwise.

Suppose that B(ε) is in S for all small ε. Computing.

γ1 = (b21 + a21ε)/a21

γ0 = b22 − γ1a22.

Then the equation B(ε)11 = γ1A(ε)11 + γ0 is a linear (not quadratic) equation
in ε. A necessary condition for linear dependence of the powers of A(ε) for
more than 1 value of ε is that the coefficient on ε is zero. This happens only
for a set of A-matrices S 2 of codimension at least 1. Hence for all but at most
one small enough ε, A(ε) < S 1/S 2. Since S 2 is nowhere dense, this proves
the theorem. �

Proof of theorem 7. Let m = F(c, d, J, γ); M is the matrix of reduced form co-
efficients. Our goal is to see how they map back to the structural parameters.
We will prove the theorem for nv odd and equal to 2K + 1. The proof for even
nv is similar.

By hypothesis, I − JA(γ) is non-singular. Thus

M =
(
I − JA(γ)

)−1(
cI + dA(γ)

)
=

(
I − JA(γ)

)−1(
cI + dI − dI + dA(γ)

)
= (c + d)

(
I − JA(γ)

)−1
− dI

(89)
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and so
dI + M = (c + d)(I − JA(γ)

)−1
, (90)

which verifies that dI + M is non-singular if c + d , 0.

In view of equation (57) which defines A(γ),

(I − JA(γ)
)
11

= 1

and

−

(
I − JA(γ)

)
12(

I − JA(γ)
)
11

= Jγ,

(
I − JA(γ)

)
13(

I − JA(γ)
)
12

= · · · =

(
I − JA(γ)

)
1 K+1(

I − JA(γ)
)
1K

= γ .

Now define

M = {M : for some (c, d, J, γ) ∈ P, F(c, d, J, γ) = M}

MdJ = {M : for some (c, γ) ∈ R2 × [0, 1), F(c, d, J, γ) = M}

These are, respectively, the sets of all possible reduced form matrices and
those reduced forms consistent with a particular parameter pair of structural
parameters (d, J).

Equation (90) then requires the following: If M ∈ MdJ, then

(dI + M)11 , 0

and

−

(
dI + M

)−1

12(
dI + M

)−1

11

= Jγ, (91)

(
dI + M

)−1

13(
dI + M

)−1

12

= · · · =

(
dI + M

)−1

1 K+1(
dI + M

)−1

1K

= γ . (92)
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We will use this fact to show that for a given reduced form matrix M ∈ M there
are at most 2(nV − 1) possible values of (d, J) pairs consistent with equa-
tion (92). We will show that each of these (d, J) pairs is consistent with a
unique (c, γ) pair, which proves the theorem.

Under our assumed model specification, M is symmetric. Thus it has
real eigenvalues λ1, . . . , λnV , and is diagonalizable by a unitary matrix P. Fur-
thermore, for any scalar d, dI + M is diagonalized by the same matrix P, and
has Eigenvalues d + λ1, . . . , d + λnV . Consequently,

(dI + M)−1 = P−1


1

d+λ1
0 · · · 0

0 1
d+λ2

· · · 0
. . .

0 0 · · · 1
d+λnV

 P .

The i, j’th entriy of the matrix product on the right is

(dI + M)−1
i j =

1∏
j(d + λ j)

∑
k

pik pk j

∏
l,k

(d + λl) .

for any d which is not the negative of an eigenvalue of M (which would make
dI + M singular). We now ask, for which values of d can equation (92) be
satisfied? Define φi j(d) =

∑
k pik pk j

∏
l,k(d + λl). Equation (92) implies that

φ13(d)
φ12(d)

=
φ14(d)
φ13(d)

and so
p(d) ≡ φ13(d)2 − φ14(d)φ12(d) = 0 .

Then p(d) is a polynomial of degree at most 2(nV − 1). The dependence of the
polynomial on the terms pi j is the link between the reduced form coefficients
and the structural parameters. To see that it is not identically 0, suppose that
M = F(c′, d′, J′, γ′). From equation (89), it follows that the value of the deriva-
tive of the matrix dI + M at d = d′ is (c′+ d′)2(I − J′A(γ′))2. From this fact, a
calculation shows that if neither γ′ nor J′ are 0, and c′+ d′ , 0, then p′(d′) =
0 only for the solutions to a polynomial equation in γ and J which is not iden-
tically 0. Thus p′(d′) , 0 only on a lower-dimensional set C of (c′, d′, J′, γ′).
That is, for M ∈ M′ = {M : for some (c, d, J, γ) ∈ P/C, F(c, d, J, γ) = M},
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Off of this set, for any d sufficiently near to but not equal to d′, p(d′) , 0.
Thus for M ∈ M′ = {M : for some (c, d, J, γ) ∈ P/C, F(c, d, J, γ) = M},
p(d) = 0 has at most 2(nv − 1) solutions. For each d which is a root of
p(d), −(dI + M)−1

12 / − (dI + M)−1
11 = Jd (equation (91)). The ratio of any

other pair of adjacent entries of the (dI + M)−1 matrix determines γd. Finally,
cd solves

(
I − A(γd)

)
(dI + M) − dI = cI for c. Suppose, then, that M =

F(c′, d′, J′, γ′) for (c′, d′, J′, γ′) ∈ P/C. If a parameter vector (c′′, d′′, J′′, γ′′)
is not such that d′′ is a root of p(d), or that c′′, J′′, and γ′′ do not equal
the corresponding cd, Jd and γd, then (c′′, d′′, J′′, γ′′) is not observationally
equivalent to (c′, d′, J′, γ′). If γ = 0, then neither d nor J can be identified. In
this case M = cI. Conversely, if M = c′I, from (90) either J = 0 and d = 0 or
γ = 0. From equation (58), if J = 0 and M = c′I, then either γ = 0 or d = 0
as well, and c′ = c. �

A3 Equilibrium Properties of Discrete Choice
Models with Social Interactions

This appendix describes some aspects of the group-level equilibria for dis-
crete choice models of social interactions. The models we discuss are similar
in structure to the quantal response equilibria first developed by McKelvey and
Palfrey (1995). The social interactions and quantal response equilibria litera-
tures have evolved independently; as is true for other cases of parallel devel-
opment that we have noted, each literature would benefit from integration with
the other.

i. basic structure of the binary choice model with social in-
teractions

We first outline the theoretical properties of the binary choice model with social
interactions for a single group g, following Brock and Durlauf (2001a). As in
the text, choices are coded so that ωi ∈ {−1, 1}. Define hi = k + cxi + dyg.
From the perspective of the equilibrium of the group, contextual effects act in
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a way analogous to a constant term, an observation that is used in the proof
of theorem 4 on identification. The utility function for a given choice is

Vi(ωig) = hiωig −
J
2

E((ωig − ω̄−ig)
2) +ηi(ωig) (93)

where ω̄−ig = (I − 1)−1 ∑
j,i ω jg and ηi(ωig) is a choice-specific random utility

term. In parallel to the linear in means model, there is a penalty for expected
square deviations of i’s choice from the mean choices of others. Since ω2

ig ≡ 1,

−
J
2
(ωig − ω̄−ig)

2 = Jωigω̄−ig −
J
2
(1 + ω̄2

−ig) .

The second term on the right is independent of ωig, and so the utility function
of equation (93) yields the same behaviors as

Vi(ωig) = hiωig + Jωigme
ig + ηi(ωig)

where me
ig = (I − 1)−1 ∑

j,i Eωig|Fi. It is immediate that

Vi(1) − Vi(−1) = 2hi + 2Jme
ig − εi (94)

where εi = ηi(−1) − ηi(1). This justifies equation (59). As the group size
grows large, me

ig will become independent of i.

ii. equilibria under logit models of social interactions

To illustrate the qualitative properties of the binary choice model with social
interactions, following Brock and Durlauf (2001a), we maintain the i.i.d. error
assumptions (60) and (61) and further assume a functional form for Fε:

Fε(z) =
1

1 + exp (−βz)

that is, the individual-specific utility terms errors are negative exponentially
distributed. The parameter β indexes the degree of unobserved heterogeneity.
A larger β implies less heterogeneity in the sense that the probability mass of
Fε(z) is more concentrated towards the origin.
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This functional form, when combined with equation (94), produces the
canonical logistic density for equilibrium choices

µ(ωig|hi, mg) =
exp (βhiωig + βJmgωig)

exp (βhiωig + βJmgωig) + exp (−βhiωig − βJmgωig)
. (95)

From equation (95) it is immediate that the expected value of agent i’s choice
is

E(ωig|hi, mg) =
exp (βhiωig + βJmgωig) − exp (−βhiωig − βJmgωig)

exp (βhiωig + βJmgωig) + exp (−βhiωig − βJmgωig)

= tanh (βhi + βJmg) .
(96)

The expected group mean is simply the unweighted average of (96) across i.
Letting dFh|g denote the empirical density of hi within group g, mg is implicitly
defined by

mg =

∫
tanh (βh + βJmg)dFh|g .

To understand the properties of the equilibrium, we consider the baseline case
in the literature in which hi is constant, that is, for all i, hi ≡ h, so that the equi-
librium expected average choice levels are described by a functional equation.
(No closed form solution exists.)

mg = tanh (βh + βJmg) . (97)

Brock and Durlauf (2001a) characterize the properties of solutions to equation
(97), which we summarize as

Theorem A.3. Equilibria in the logistic version of the binary choice model
with social interactions.

i. If βJ < 1, equation (97) has a unique solution.

ii. If βJ > 1, then there exists a nondecreasing and positive function h̄(βJ)
of βJ such that

i. the equilibrium solution to equation (97) is unique if |h| > h̄(βJ);
and

ii. there exist three equilibrium solutions to equation (97) if |h| <
h̄(βJ). One equilibrum has the same sign as h.
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The intuition for the theorem is straightforward. βJ < 1 means that the
endogenous social interaction effect is too weak to generate multiple equilib-
ria. Notice that strength of the interaction effect is not determined by J, the
endogenous effect parameter, in isolation, but is multiplied by the measure for
heterogeneity. Why would a small value of β work against the existence of
multiple equilibria? A small β implies fatter tails for the unobserved hetero-
geneity density. By symmetry of this density, fat tails means a relatively large
fraction of the population will, in expectation, have their choices determined
by their heterogeneity draws. This leaves too small a fraction whose behavior
can exhibit multiple equilibria via self-consistent bunching; the utility differen-
tial between the choices is insufficiently affected by the range of possible mg
values once the tail draws are accounted for. In contrast, βJ > 1 means that
the endogenous social utility payoff is large enough relative to the symmetri-
cally distributed heterogeneity, then multiple expected average choice levels
are possible, if |h| < h̄(βJ). Why is this second condition needed? If the com-
mon private incentive h has sufficient magnitude, it will determine a sufficiently
large fraction of choices so that self-consistent bunching is not possible. Again,
greater heterogeneity reinforces this effect. Notice that qualitative changes in
the number of equilibria for this model occur in neighborhoods of the value 1
for βJ and h̄(βJ) for h. These are bifurcation thresholds.

Blume and Durlauf (2003) extend this theorem by considering a dy-
namic analog of the binary choice model with social interactions. Their anal-
ysis focuses on the stability of the rational expectations equilibria associated
with (97). For a dynamic analog of the model we have outlined, one can show
the population spends most of its time in the vicinity of the equilibrium that
maximizes average utility in the group, which is the equilibrium whose mean
choice has the same sign as h.

iii. generalizations of the binary choice model

The properties of this model generalize to a number of interesting related
structures. For example, one can analyze the general preference specifica-
tion

Vi(1) − Vi(−1) = hi + Jmg − β
−1εi
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where Fε is is an arbitrary probability distribution function for the unobserv-
able individual-level ε heterogeneity. Retaining the i.i.d. error assumptions
(60) and (61) and focusing on the case where h is constant, Brock and Durlauf
(2006) prove that a close analog to theorem A.3 holds for this general binary
choice model. Two changes occur when the logit function form assumption is
dropped. First, the necessary condition for multiple equilibria takes the form
βJ > T , where the threshold T cannot be determined without specification
of Fε. In other words, some threshold for βJ always exists that can produce
multiple equilibria. Second, for part ii.b, the threshold result for multiple equi-
libria states that at least three equilibria exist. The more precise structure of
theorem A.3 derives from the specific functional form found in equation (97).
The qualitative features of the theorem do not.

The qualitative properties of the theorem also extend to local interac-
tions environments, i.e. contexts where individuals are arrayed in some social
space and only interact with their suitably defined neighbors. One version of a
local interactions model is studied in Blume (1993). An expectational version
of his model can be represented by

Vi(1) − Vi(−1) = hi + J
∑
|i− j|=1

E(ω jg)−εi

where E(ω jg) is the equilibrium expectation of ω jg conditional on the values
of hi across the population. If we impose the assumption that for all i, hi = h,
then it is immediate that equation (97) continues to characterize the symmet-
ric equilibrium average choice levels in the population. It is obvious that other
interactions structures can do the same. The similar aggregate properties for
different interactions specifications is itself known as the property of univer-
sality, which in social interactions contexts means that there exist dimensions
along which the qualitative properties of the models do not depend on the de-
tails of the interaction structure. The reader should consult Ioannides (2006)
for extensions of these types of models to more complex interactions struc-
tures.

iv. multinomial choice models with social interactions

Multiple equilibria and bifurcations are not unique to the binary choice context.
Brock and Durlauf (2006) show that theorem A.3 is a special case of
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Theorem A.4. Multiple equilibria in the multinomial logit model with so-
cial interactions. Suppose that individual choices are characterized by equa-
tions (71), (72), and (73). Assume that hil = k for all i and l. If βJ > L, there
will exist at least three self-consistent choice probabilities.

The dependence of the threshold on the number of choices L is intu-
itive. The larger the number of choices, under independence of εil across l,
the greater the probability that one of the draws will dominate the agent’s
choice, which reduces the fraction of agents whose behavior can exhibit self-
consistent bunching. Brock and Durlauf (2006) additionally provide analogous
results for general density functions for εil. As in the binary choice case the re-
sults are less precise. This theorem and its generalization in Brock and Durlauf
(2006) explain various simulation results in Bayer and Timmens (2005).
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